Cryptographic protocols

Myrto Arapinis

School of Informatics University of Edinburgh

February 10, 2014

1/14

Context

Applications exchanging sensitive data over a public network:

- ► eBanking,
- ► eCommerce.
- ► eVoting,
- ► ePassports,
- ► Mobile phones,
- ▶ ..

A malicious agent can:

- ► record, alter, delete, insert, redirect, reorder, and reuse past or current messages, and inject new messages
 - \longrightarrow the network is the attacker
- ► control dishonest participants

2 / 14

More complex systems needed...

 $e=E(K_E, \text{Transfer } 100 \in \text{on Amazon's account})$ $m=MAC(K_M, E(K_E, \text{Transfer } 100 \in \text{on Amazon's account}))$

Replay attack

(e,m)

 $\xrightarrow{(e,m)}$ \vdots

... to achieve more complex properties

- ► Confidentiality: Some information should never be revealed to unauthorised entities.
- ► Integrity: Data should not be altered in an unauthorised manner since the time it was created, transmitted or stored by an authorised source.
- ► Authentication: Ability to know with certainty the identity of an communicating entity.
- ► Anonymity: The identity of the author of an action (e.g. sending a message) should not be revealed.
- ► Unlinkability: An attacker should not be able to deduce whether different services are delivered to the same user
- ► Non-repudiation: The author of an action should not be able to deny having triggered this action.

▶ ...

Cryptographic protocols

Cryptographic protocols

Programs relying on cryptographic primitives and whose goal is the establishment of "secure" communications.

But!

Many exploitable errors are due not to design errors in the primitives, but to the way they are used, *i.e.* bad protocol design and buggy or not careful enough implementation

5 / 14

Logical attacks

Many of these attacks do not even break the crypto primitives!!

Numerous deployed protocols are flawed!!!

Needham-Schroeder protocol - G. Lowe, "An attack on the Needham-Schroeder public-key authentication protocol"

Kerberos protocol - I. Cervesato, A. D. Jaggard, A. Scedrov, J. Tsay, and C. Walstad, "Breaking and fixing public-key kerberos"

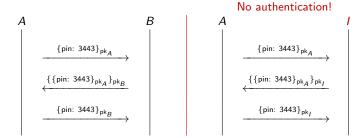
Single-Sign-On protocol - A. Armando, R. Carbone, L. Compagna, J. Cuellar, and M. L. Tobarra, "Formal analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based single sign-on for google apps"

PKCS#11 API - M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel, "Attacking and fixing PKCS#11 security tokens"

BAC protocol - T. Chothia, and V. Smirnov, "A traceability attack against e-passports"

AKA protocol - M. Arapinis, L. Mancini, E. Ritter, and M. Ryan, "New privacy issues in mobile telephony: fix and verification"

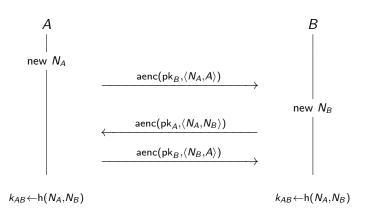
. . .


6 / 14

Example of a logical attack

Assume a commutative symmetric encryption scheme

$$\{\{m\}_{k_1}\}_{k_2} = \{\{m\}_{k_2}\}_{k_1}$$


where $\{m\}_k$ denotes the encryption of message m under the key k Example: RSA

since $\{\{\text{pin: }3443\}_{\text{pk}_A}\}_{\text{pk}_B} = \{\{\text{pin: }3443\}_{\text{pk}_B}\}_{\text{pk}_A} \text{ by commutativity}$

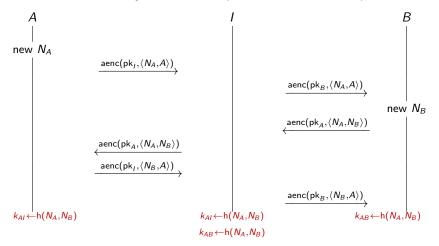
Needham-Schroeder Public Key (NSPK)

NSPK: authentication and key agreement protocol

[N. Roger, M. Schroeder, Michael. "Using encryption for authentication in large networks of computers". Communications of the ACM (December 1978)]

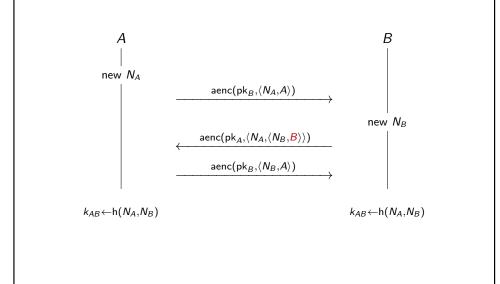
9/14

11 / 14

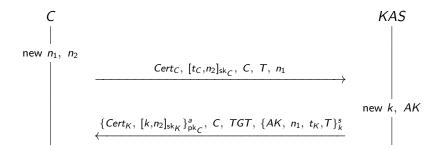

NSPK: security requirements

- ► Authentication: if Alice has completed the protocol, apparently with Bob, then Bob must also have completed the protocol with Alice.
- ► Authentication: If Bob has completed the protocol, apparently with Alice, then Alice must have completed the protocol with Bob.
- ► Confidentiality: Messages sent encrypted with the agreed key $(k \leftarrow h(N_A, NB))$ remain secret.

10 / 14


NSPK: Lowe's attack on authentication

Attack found 17 years after the publication of the NS protocol!!


[G. Lowe. "An attack on the Needham-Schroeder public key authentication protocol". Information Processing Letters (November 1995)]

NSPK: Lowe's fix

Public Key Kerberos PKINIT-26 (very abstract)

Goals: client authentication, key agreement, TGT delivery

- $\{m\}_{k}^{s}$: message m symmetrically encrypted under key k
- $\{m\}_{k}^{a}$: message m asymmetrically encrypted under key k
- ▶ $[m]_k$: message m digitally signed with key k
- $ightharpoonup t_C, t_K$: timestamps
- $TGT = \{AK, C, t_K\}_{k_T}^s$

14 / 14