
Network and
Internet Defences

Computer Security Lecture 13

David Aspinall

School of Informatics
University of Edinburgh

10th March 2014

Outline

Firewalls

Attack detection

Attack attraction

Building in security

Firewall varieties
Protect vulnerable machines; compensate for
impossibility of securing internal networks.
1. Packet filters. Cheap, fast, stateless. Filter based

on source/dest addresses, port numbers. Built into
routers. Drawbacks: prevent some protocols (plain
FTP, maybe UDP), dynamic port assignment (RPC).

2. Dynamic packet filters. Stateful filters; allow
more protocols by parsing command streams,
portmapper messages, UDP protocols, “port
knocking”. Drawback: complexity.

3. Application gateways. Each app has dedicated
program at firewall which acts as a relay/proxy.
SMTP and HTTP work well. Drawback: gateways for
each app; bottlenecks.

4. Circuit relays, e.g., SOCKS. Generic circuit-passing
for TCP connections. Middle ground between 1
and 3. Drawbacks: poor for outgoing traffic (can
even tunnel IP).

Firewall issues
◮ Outbound (egress) filtering blocks launch points in
DoS attacks and prevents spyware software which
“phones home” with user information.

◮ Complex architectures use multiple firewalls.
Outermost, a packet filter (choke), links to internal
demilitarized zone (DMZ) subnet, with further
app relays, filters, and isolated intranets.

◮ Security cornerstone, yet serious limitations:
◮ Hard to configure/maintain (tiger teams/automated
analysis).

◮ May bypass(frag’d packets, FIN-scans, tunnels).
◮ Don’t prevent attacks at higher level. Circuit relay
won’t prevent SMTP attacks. Application gateway
may scan emails for viruses, but either accepts or
rejects too much.

◮ Clearly can’t prevent inside attacks, or protect apps
that must be exposed (web servers). Growth of
web-services: “Internet interprets censorship as
damage and routes around it.”

Logging, Auditing and Forensics
◮ After break-in attempts or compromise, log files
may provide evidence and audit trails.

◮ Common Unix logs (in /var/log): lastlog, utmp
and wtmp, actt and psacct, messages, secure.
Other programs have specific logs, e.g: maillog,
httpd/access_log, xfer_log.

◮ Beware! If a system has been compromised, there
may be no guarantee of the integrity of the log files.
Countermeasures: use append only filesystem; log
to a dedicated secure server or even secure printer.

◮ Certification may require logging, but log analysis
tools are limited (exceptions: swatch, logwatch).

◮ Forensics: the art of reading other less obvious,
incidental trails. E.g., shell, editor, application
history/lock files; secret key files; outgoing mail
drops, firewall and web cache logs; ultimately file
system block level or hard-drive data recovery.

Intrusion Detection
◮ Realization: log and audit info was hardly used.
Idea: trigger an alarm when some condition
observed; alarm may be log/email (risks slow
response) or shutdown/recovery (risks DoS).
◮ boundary conditions: traditional simple tests of
number of failed logins, credit card
expenditure/location movement.

◮ misuse detection: model likely behaviour of an
intruder. Scan for characteristic attack signatures,
e.g., presence of virus, system file changes
(Tripwire), execution of unusual commands, or
falling into honey trap.

◮ anomaly detection: use heuristics or neural nets
to build model of normal behaviour, and then flag
unusual events.

◮ Issues: difficult problem; Internet is noisy medium;
too few attacks so more false alarms than real
ones; maintaining library of attack signatures;
encryption can conceal signatures.

Honeypots and Honeynets
◮ Honeypot/net: a system or network whose value
lies in being probed or attacked. Not necessarily
designed to attract attackers explicitly.

◮ Idea raised 1990/1: Clifford Stoll’s book The
Cuckoo’s Egg and Bill Cheswick’s paper An Evening
with Berferd. Products appeared 1997 on.

◮ Primary use: gathering data on attacks, maybe as
evidence. Easy since any activity is abnormal.
Standard technology: logging, packet scanning,
IDS. Log security critical!

◮ Advantages: false positives and false negatives
reduced compared with IDS running on ordinary
production machines. But perhaps additional risk
associated in both IT and legal senses (ex: where?)

◮ Distinction:
◮ production honeypots
◮ research honeypots

Production Honeypot Deployment

◮ Production honeypots configured identically to
corresponding machines. No DNS entries.

Research Honeypots and Honeynets
◮ More sophisticated than production systems.
◮ Often a high-level of virtualization. Single machine
may simulate entire heterogeneous network,
including routers, workstations, printers.

◮ Containment important: we can use jailed
environments. For example, Unix chroot with
customized suite of programs. Risks: attacker
recognizes this, or breaks out.

◮ Limiting external connectivity also important: don’t
want to become the launch point for attacks on
external networks.

◮ Nonetheless want to offer a high level of interaction
to attackers as possible, and appear convincing
(e.g. assign a domain name, fabricate a list of
users, simulate network activity).

◮ Advanced attackers (as opposed to script kiddies)
may still be difficult to detect/attract.

The Honeynet Project (www.honeynet.org)
◮ “A non-profit research organization of security
professionals dedicated to learning the tools,
tactics, and motives of the blackhat community and
sharing the lessons learned.”

◮ Fanciful analogy to scouts in military. Produced
revealing series of Know Your Enemy papers.

◮ Started in 1999 by building (real) honeynets from
standard installs of production systems. Results:
◮ End 2000: average life expectancy of standard
RedHat 6.2 install was <72hrs

◮ Records: system compromise 15mins, worm: 90secs
◮ 2001: 100% increase in incidents

◮ CDROM Roo, boots into a Linux-based Honeynet
gateway, or “Honeywall”. Target systems placed
behind the gateway; the gateway performs all Data
Capture (i.e., logging) and Data Control (i.e.,
containment; firewalling).

Client Honeypots (2004-)
◮ Realisation: honeypots mainly passive and
watching servers, while many exploits attack
clients to install malware.

◮ Basic idea:
1. design a honeyclient that emulates or is built-on a

standard client or suite (e.g., IE 6 in WinXP)
2. use Tripwire-like methods to monitor client, system

files, registry, etc
3. crawl suspicious web sites or URLs in emails
4. build database of malicious file alterations
5. filter whitelist of innocuous changes
6. learn about exploits, build blacklist of URLs

◮ Implementations:
◮ MITRE Honeyclient (2004)
◮ Microsoft’s HoneyMonkey (2005)
◮ Google Safe Browsing API (2008)

◮ Again, needs carefully designed resilient
architecture.

Securing Unsecured Networks

◮ Link-level security. Confidentiality and
authentication ensured on individual links.
◮ Most transparent; implemented by low-level
hardware.

◮ Appropriate only for local traffic, or small number of
vulnerable lines.

◮ Examples: satellite circuits, transatlantic cables,
and Wi-Fi Protected Access (WPA).

◮ Network/transport-level secruity.
Conversations secured in the networking protocol.
◮ Transparent to applications, but can set security
needs by need and negotiation.

◮ E.g., for the Internet, IPsec.

Securing Unsecured Networks

◮ Application-level security. Confidentiality and
authentication secured by the application.
◮ Least convenient (each app must be modified)
◮ . . . but most flexible: can be customized for
application concerned

◮ Examples include ssh for remote login, SSL/TLS
designed for secure web transactions, and S/MIME
or PGP for secured email.

IPsec and IPv6

◮ IPv6 adds strong crypto security services to IP.
IPsec is the retrofit to IPv4. Three mechanisms:

◮ Authentication Header (AH) [RFC2402]
◮ New header after the IP header used for
authentication.

◮ Includes SPI; sequence no; integrity check hash.
◮ Encapsulating Security Payload (ESP)
[RFC2406]
◮ Encryption mechanism providing confidentiality
and/or authentication. (Originally purely
confidentiality, but then attacks were discovered).

◮ Internet Key Exchange protocol (IKE)
[RFC2409]
◮ Protocol for negotiating security and
authentication/encryption keys

◮ Uses Diffie-Hellman (i.e., key agreement of fresh
shared key without authentication).

IPsec: Security Associations
◮ The Internet Security Association and Key
Management Protocol (ISAKMP) [RFC2408],
describes negotiating a security association (SA),
which defines:
1. a destination IP,
2. a protocol ID,
3. an SPI (security parameter index), an identifier to

track SAs.
◮ Security association meaningful for destination end
only: peer-to-peer security requires two SAs.

◮ SAs are usually negotiated dynamically using IKE,
although other protocols possible.

◮ IKE is rather complicated (allows for extending SAs,
deleting SAs, detecting dead peers), which has
raised interoperability problems. A Kerberos-based
protocol and simplified version, IKEv2 (2005), may
replace it.

IPsec: AH and ESP

◮ To use AH with an IPv6/IPsec datagram, the sender:
◮ locates a SA to determine the mechanism
◮ calculates the authentication data based on the
ready part of the packet (uninitialized fields, e.g.,
authentication data, are zeroed).

A MAC such as HMAC with MD5, SHA-1 is used.
◮ Similarly, to use ESP with an IPv6/IPsec datagram,
the sender:
◮ locates a SA to determine the mechanism
◮ calculates the encryption and/or authentication

◮ There is much flexibility over where IPsec is placed:
encryption may occur at hosts or routers; packets
may be sent in a transport or tunneled mode.

IPsec in Transport mode
◮ In transport mode, the AH is inserted after the IP
header and before an upper layer protocol (e.g.,
TCP, UDP, ICMP).

◮ Original IPv4 packet:

IP hdr TCP hdr User Data

becomes:
IP hdr AH hdr TCP hdr User Data
|←− authenticated −→|

◮ Authentication doesn’t apply to mutable fields of IP
header.

◮ ESP in transport mode similar, except a trailer is
added to user data (including encryption padding)
before encrypting. Encryption applies to TCP
header, user data, and trailer. Authentication field
is added at the end. Minor difference: no
authentication of IP header.

IPsec in Tunnel mode
◮ In tunnel mode, the “inner” IP header carries the
ultimate source and destination addresses,
whereas an “outer” IP header may contain other
addresses, e.g., addresses of security gateways.

◮ An IPv4 packet before:

IP hdr TCP hdr User Data

and after:

new IP hdr AH hdr old IP hdr TCP hdr User Data
|←− authenticated −→|

◮ Authentication doesn’t apply to mutable fields of
new IP header.

◮ ESP in tunnel mode encrypts the original IP header,
TCP header, user data, and the ESP trailer
(padding). An extra authentication field is
appended. Again, authentication of the new IP
header is omitted with ESP.

IPsec: summary

◮ Advantages:
◮ provides security transparently for all applications;
◮ adds to IP level end-to-end data reliability, secure
sequencing of datagrams, authentication and
confidentiality;

◮ in long term, likely to improve overall Internet
infrastructure and security.

◮ Disadvantages
◮ crypto operations impinge on throughput and
latency everywhere, irrespective of security needs;

◮ security model is low-level and may be
disconnected from application level (e.g.,
authentication is host-based, not user-based);

◮ complex to implement, choice of configurations;
◮ does not prevent traffic analysis or covert channels.

DNS Security
◮ DNS Security design dates back to 1993;
deployment increasing now. DNS data (RRsets,
Resource Record sets) is considered public, so no
confidentiality provision; security mechanisms add
authentication and integrity by digital signatures.

◮ The DNSSEC extensions provide three services:
1. data origin authentication and integrity, using

public zone keys. Security-aware resolvers build a
chain of trust.

2. key distribution, so servers transmit keys
3. transaction and request authentication for

DNS.
◮ New security-related RRs are added:

◮ KEY record, for public keys (specifying algorithm)
◮ SIG record, for attaching digital signatures
◮ NXT record, for non existence. Secure negative
responses.

◮ Many further issues (caching, insecure
compatibility, etc).

The Secure Shell

◮ SSH is a set of programs that offers secure TCP
communications between two systems, regardless
of untrusted systems between them (routers,
firewalls, sniffers, etc.). A powerful security tool.

◮ Provides secure replacements for telnet, rsh, rcp,
rlogin, ftp. Can be a secure tunnel for any TCP
service; a cheap VPN-alike (e.g., ppp over ssh).

◮ Offers encryption, authentication, integrity. Protects
against IP and DNS spoofing, fake routes, MITM,
replay.

◮ Flexible choice of ciphers. Implementations for
various platforms, including free OpenSSH.

◮ Disadvantages: need to carry private key around;
still vulnerable to DoS attacks (connection
terminations) by injected IP packets.

Virtual Private Networks

◮ Extend the boundary of a protected domain, e.g.
for:
◮ Remote branch offices or business collaborations.
Shared file systems, logins, databases.

◮ Telecommuting. Tricky issues over IP addresses,
routing and DNS.

◮ Implementations in software or hardware
◮ Software: pros: configurability; cons: complexity,
compromises.

◮ Hardware: pros: simplicity

◮ Security by encapsulation in the network level,
using e.g. IPsec, L2TPv3+IPsec, SSL/TLS.

Other defences, mechanisms and tools

◮ Kerberos: secure authentication system for
networks: tickets with short lifetimes, reduces
password traffic on network. Applications have to
be adapted to use Kerberos libraries. Improves
security inside network perimeters (compared with
host-based trust on network services).

◮ SRP, Secure Remote Password is an authentication
protocol which avoids encryption algorithms, allows
short passwords, and stores sensitive information
on server so that it cannot be subjected to
dictionary attack.

◮ SSL/TLS-enhanced protocols e.g., SSLtelnet,
SSLftp, stunnel.

References
Edward G. Amoroso. Intrusion Detection: An
Introduction to Internet Surveillance, Correlation,
Trace Back, Traps and Response.
Intrusion.Net, 1999.

Simson Garfinkel, Gene Spafford, and Alan
Schwartz. Practical UNIX and Internet Security.
O’Reilly, 3rd edition, 2003.

Lance Spitzner. Honeypots: tracking hackers.
Addison-Wesley, 2003.

William R Cheswick, Steven M Bellovin, and Aviel D
Rubin. Firewalls and Internet Security Second
Edition: Repelling the Wily Hacker.
Addison-Wesley, 2003.

Recommended Reading

Part II of Cheswick (1st edition available online).

