
Email and Web Security
Computer Security Lecture 11

David Aspinall

School of Informatics
University of Edinburgh

4th March 2013



Outline

Secure Email: PGP and S/MIME

Issues of trust

Web security: transport

X.509



Outline

Secure Email: PGP and S/MIME

Issues of trust

Web security: transport

X.509



Email infrastructure security

É Email, the first widely available Internet service,
has a very simple backbone. SMTP (Simple Mail
Transport Protocol) uses plain-text commands in a
telnet session, with little or no authentication. You
can type them directly.

É Old retrieval protocols like POP3 use plaintext and
clear passwords. Secure IMAP is better.

É This is why email is trivially forgeable.
Moreover, most email is sent as plaintext which
provides no confidentiality.

É Email today is typically stored on private
organizational mail servers, or at Internet email
service providers (e.g., Google).

É Email clients are either specialized for email (e.g.,
MS Outlook), or browser-based.



Attack types

Server attacks:
É Sending spam through open relays (accept mail

from anywhere), also gaining access to systems.
Most infamous is sendmail, which allowed
command execution: exploited by Morris Internet
Worm in 1988.

Solutions: run server in restricted environment; use
application gateway in firewall.

Client attacks:
É Plain text poses no direct threat. Many virus

warnings (old e.g.: “Good Times”) are hoaxes.
But macro languages and active content led to
serious email-transmitted viruses and Trojans.
Current no 1: phishing attacks and embedded
links to malicious web sites.



Attack types

Server attacks:
É Sending spam through open relays (accept mail

from anywhere), also gaining access to systems.
Most infamous is sendmail, which allowed
command execution: exploited by Morris Internet
Worm in 1988.
Solutions: run server in restricted environment; use
application gateway in firewall.

Client attacks:
É Plain text poses no direct threat. Many virus

warnings (old e.g.: “Good Times”) are hoaxes.
But macro languages and active content led to
serious email-transmitted viruses and Trojans.
Current no 1: phishing attacks and embedded
links to malicious web sites.



Attack types

Server attacks:
É Sending spam through open relays (accept mail

from anywhere), also gaining access to systems.
Most infamous is sendmail, which allowed
command execution: exploited by Morris Internet
Worm in 1988.
Solutions: run server in restricted environment; use
application gateway in firewall.

Client attacks:
É Plain text poses no direct threat. Many virus

warnings (old e.g.: “Good Times”) are hoaxes.
But macro languages and active content led to
serious email-transmitted viruses and Trojans.
Current no 1: phishing attacks and embedded
links to malicious web sites.



Securing email
É Two good PK models supported by email

applications: S/MIME (Secure Multipurpose
Internet Mail Extension) and PGP (Pretty Good
Privacy). Many less-good mechanisms.

É Same general technique:

A→ B : {M}K ,
︸ ︷︷ ︸

encrypted

message

{K }Kb ,
︸ ︷︷ ︸

encrypted

session key

SA(h(M),T)
︸ ︷︷ ︸

digital

signature

Alice makes one-time session key K and encrypts
email M with it. She encrypts the session key with
Bob’s public key Kb (sometimes called a digital
envelope). Optionally, she includes a signature, by
signing a hash of the message h(M) and a
timestamp T. Sometimes {M,T }K is sent (replay).

É For multiple recipients include multiple envelopes.



S/MIME

É Newer than PGP, but standardization began sooner,
in RSA labs. Built into email clients of Mozilla and
Microsoft, among others.

É S/MIME uses X.509 personal certificates, signed
by a certification authority, using a trust
hierarchy model. Usually certs cost money.

É S/MIME uses the same PKI (Public Key
Infrastructure) as TLS. Integrated email clients of
web browsers implement it hand-in-hand.

É Organisations can implement their own internal
closed PKIs.



S/MIME . . .

É Pros: same infrastructure as SSL, use of hierarchical
trust model more appropriate in some
circumstances.

É Cons: Requires separate process to acquire (and
pay for) certificate.

É Has robust and increasingly-scrutinised open
source implementation in the OpenSSL Project.
See Mozilla’s PKI page for details of other
open-source PKI software.

http://www.openssl.org


PGP
É PGP has a venerable history. Invented by Phil

Zimmerman in 1991, strong believer in privacy
rights. Made available as freeware. Source code
published in a book in 1995 to circumvent US
export restrictions: a team used OCR to reconstruct
an international version of the program, PGPI.

É PGP is supported by mail client plugins and local
proxies. Crypto specs and file formats are now
standardised in OpenPGP, a developer consortium
and IETF Working Group [RFC 2440].

É OpenPGP public keys are hosted on a network of
PGP keyservers, and can be countersigned, using
PGP’s web-of-trust model, without TTPs.

É Messages in OpenPGP (ASCII) and PGP/MIME.
É Pros: open source code scrutinized for years; not

limited to email. Some PGP products have NIST
security certification. Cons: trust model not suited
to commercial application.

http:///www.philzimmerman.com
http:///www.philzimmerman.com
http://www.pgpi.org/doc/whypgp/en/
http://www.pgpi.org/doc/whypgp/en/
http://www.informatics.ed.ac.uk/teaching/courses/cs/docs/gpg/rfc2440.txt


Outline

Secure Email: PGP and S/MIME

Issues of trust

Web security: transport

X.509



Trust structures: Hierarchy of trust

É Original PEM (Privacy Enhanced Mail) project
planned a single hierarchy with the “Internet Policy
Registration Authority” at its root.

É This didn’t happen. Instead, a forest of CAs evolved.
É Browsers have certificates of many root CAs

built-in.
É Revocation used to be by CA-supplied Certificate

Revocation Lists (CRLs), cf. credit card hot-lists.
É Modern solution is Online Certificate Status

Protocol (OCSP) for real-time checks.



Trust structures: Hierarchy of trust

É Original PEM (Privacy Enhanced Mail) project
planned a single hierarchy with the “Internet Policy
Registration Authority” at its root.

É This didn’t happen. Instead, a forest of CAs evolved.

É Browsers have certificates of many root CAs
built-in.

É Revocation used to be by CA-supplied Certificate
Revocation Lists (CRLs), cf. credit card hot-lists.

É Modern solution is Online Certificate Status
Protocol (OCSP) for real-time checks.



Trust structures: Hierarchy of trust

É Original PEM (Privacy Enhanced Mail) project
planned a single hierarchy with the “Internet Policy
Registration Authority” at its root.

É This didn’t happen. Instead, a forest of CAs evolved.
É Browsers have certificates of many root CAs

built-in.

É Revocation used to be by CA-supplied Certificate
Revocation Lists (CRLs), cf. credit card hot-lists.

É Modern solution is Online Certificate Status
Protocol (OCSP) for real-time checks.



Trust structures: Hierarchy of trust

É Original PEM (Privacy Enhanced Mail) project
planned a single hierarchy with the “Internet Policy
Registration Authority” at its root.

É This didn’t happen. Instead, a forest of CAs evolved.
É Browsers have certificates of many root CAs

built-in.
É Revocation used to be by CA-supplied Certificate

Revocation Lists (CRLs), cf. credit card hot-lists.

É Modern solution is Online Certificate Status
Protocol (OCSP) for real-time checks.



Trust structures: Hierarchy of trust

É Original PEM (Privacy Enhanced Mail) project
planned a single hierarchy with the “Internet Policy
Registration Authority” at its root.

É This didn’t happen. Instead, a forest of CAs evolved.
É Browsers have certificates of many root CAs

built-in.
É Revocation used to be by CA-supplied Certificate

Revocation Lists (CRLs), cf. credit card hot-lists.
É Modern solution is Online Certificate Status

Protocol (OCSP) for real-time checks.



Hierarchy of Trust



Trust Structures: Web of Trust

É Individuals assign trust values to public keys by
signing them.

É Should users allow transitive trust? Maybe yes,
maybe no: global advantage in trust spread widely,
but risk as it gets further away.

É Signing: social contract and PGP “signing parties”.

É check key fingerprints in person

É Revocation is by owner issuing a revocation
certificate, to revoke a signature on a key.

É but how is this distributed or checked?



Trust Structures: Web of Trust

É Individuals assign trust values to public keys by
signing them.

É Should users allow transitive trust? Maybe yes,
maybe no: global advantage in trust spread widely,
but risk as it gets further away.

É Signing: social contract and PGP “signing parties”.

É check key fingerprints in person

É Revocation is by owner issuing a revocation
certificate, to revoke a signature on a key.

É but how is this distributed or checked?



Trust Structures: Web of Trust

É Individuals assign trust values to public keys by
signing them.

É Should users allow transitive trust? Maybe yes,
maybe no: global advantage in trust spread widely,
but risk as it gets further away.

É Signing: social contract and PGP “signing parties”.

É check key fingerprints in person

É Revocation is by owner issuing a revocation
certificate, to revoke a signature on a key.

É but how is this distributed or checked?



Trust Structures: Web of Trust

É Individuals assign trust values to public keys by
signing them.

É Should users allow transitive trust? Maybe yes,
maybe no: global advantage in trust spread widely,
but risk as it gets further away.

É Signing: social contract and PGP “signing parties”.
É check key fingerprints in person

É Revocation is by owner issuing a revocation
certificate, to revoke a signature on a key.

É but how is this distributed or checked?



Trust Structures: Web of Trust

É Individuals assign trust values to public keys by
signing them.

É Should users allow transitive trust? Maybe yes,
maybe no: global advantage in trust spread widely,
but risk as it gets further away.

É Signing: social contract and PGP “signing parties”.
É check key fingerprints in person

É Revocation is by owner issuing a revocation
certificate, to revoke a signature on a key.

É but how is this distributed or checked?



Trust Structures: Web of Trust

É Individuals assign trust values to public keys by
signing them.

É Should users allow transitive trust? Maybe yes,
maybe no: global advantage in trust spread widely,
but risk as it gets further away.

É Signing: social contract and PGP “signing parties”.
É check key fingerprints in person

É Revocation is by owner issuing a revocation
certificate, to revoke a signature on a key.
É but how is this distributed or checked?



Web of Trust

See http://www.rubin.ch/pgp/weboftrust.en.html

http://www.rubin.ch/pgp/weboftrust.en.html


Other points of trust. . .

É Many interface issues.
É Is your sent (or received) encrypted mail stored

locally unencrypted or encrypted? (If the latter, you
must be on the recipient list to decrypt it!)

É How are your private keys stored? Are they
protected? Can they be extracted and shared with
other applications?

É And (perhaps above all): usability

É The browser and mail client implementations are
critical: they are trusted to invoke the crypto
operations securely, as claimed.

É Revocation check: ideally, email client ought to
allow CRL or key-server check to see if a public key
has been revoked.



Outline

Secure Email: PGP and S/MIME

Issues of trust

Web security: transport

X.509



SSL and TLS

É The SSL (Secure Sockets Layer) protocol provides
security on top of the TCP/IP transport layer, below
application-specific protocols. Each connection
needs a dedicated TCP/IP socket. But each SSL
session can allow multiple underlying connections
(reduces keying overhead).

É Provides authentication, confidentiality, integrity.
Also has built-in data compression. Layers:
handshake protocol and record protocol.

É Commonly used on web for secure communications
with a web server, in the http-over-SSL https
protocol. Usually TCP port 443 on the server.



SSL and TLS

É The SSL (Secure Sockets Layer) protocol provides
security on top of the TCP/IP transport layer, below
application-specific protocols. Each connection
needs a dedicated TCP/IP socket. But each SSL
session can allow multiple underlying connections
(reduces keying overhead).

É Provides authentication, confidentiality, integrity.
Also has built-in data compression. Layers:
handshake protocol and record protocol.

É Commonly used on web for secure communications
with a web server, in the http-over-SSL https
protocol. Usually TCP port 443 on the server.



SSL and TLS

É The SSL (Secure Sockets Layer) protocol provides
security on top of the TCP/IP transport layer, below
application-specific protocols. Each connection
needs a dedicated TCP/IP socket. But each SSL
session can allow multiple underlying connections
(reduces keying overhead).

É Provides authentication, confidentiality, integrity.
Also has built-in data compression. Layers:
handshake protocol and record protocol.

É Commonly used on web for secure communications
with a web server, in the http-over-SSL https
protocol. Usually TCP port 443 on the server.



SSL and TLS (2)

É In https, everything is encrypted (URL requested,
HTTP header, form contents, cookies, as well as
web page itself). Only thing undisguised is
connection to particular server.

É But not everything relies upon SSL for protection.
Some view the additional overhead as too costly.

É Numerous other SSL-enhanced protocols also take
advantage of SSL (SSLtelnet, SSLftp, stunnel).



SSL and TLS (2)

É In https, everything is encrypted (URL requested,
HTTP header, form contents, cookies, as well as
web page itself). Only thing undisguised is
connection to particular server.

É But not everything relies upon SSL for protection.
Some view the additional overhead as too costly.

É Numerous other SSL-enhanced protocols also take
advantage of SSL (SSLtelnet, SSLftp, stunnel).



SSL and TLS (2)

É In https, everything is encrypted (URL requested,
HTTP header, form contents, cookies, as well as
web page itself). Only thing undisguised is
connection to particular server.

É But not everything relies upon SSL for protection.
Some view the additional overhead as too costly.

É Numerous other SSL-enhanced protocols also take
advantage of SSL (SSLtelnet, SSLftp, stunnel).



SSL History
É Introduced 1994 by Netscape Navigator (major

selling point).

É Competing S-HTTP launched at same time by
CommerceNet group. S-HTTP designed to work with
Web only. Initially had to be purchased in modified
NCSA Mosaic. S-HTTP sunk.

É Microsoft’s competing attempt PCT was introduced
in first version of Internet Explorer. MS backed
down after release of SSLv3.

É Versions of SSL:

É SSL v1 used internally in Netscape (flawed)
É SSL v2 in Navigator 1.0–2.x. Had MIM attacks,

buggy random number generators. 40-bit
encryption was broken.

É SSL v3, 1996. Navigator 3.0, IE 3.0. Added fixes
and more features, including Diffie-Hellman
anonymous key-exchange.

É TLS v1, 1999. Close to SSLv3.



SSL History
É Introduced 1994 by Netscape Navigator (major

selling point).
É Competing S-HTTP launched at same time by

CommerceNet group. S-HTTP designed to work with
Web only. Initially had to be purchased in modified
NCSA Mosaic. S-HTTP sunk.

É Microsoft’s competing attempt PCT was introduced
in first version of Internet Explorer. MS backed
down after release of SSLv3.

É Versions of SSL:

É SSL v1 used internally in Netscape (flawed)
É SSL v2 in Navigator 1.0–2.x. Had MIM attacks,

buggy random number generators. 40-bit
encryption was broken.

É SSL v3, 1996. Navigator 3.0, IE 3.0. Added fixes
and more features, including Diffie-Hellman
anonymous key-exchange.

É TLS v1, 1999. Close to SSLv3.



SSL History
É Introduced 1994 by Netscape Navigator (major

selling point).
É Competing S-HTTP launched at same time by

CommerceNet group. S-HTTP designed to work with
Web only. Initially had to be purchased in modified
NCSA Mosaic. S-HTTP sunk.

É Microsoft’s competing attempt PCT was introduced
in first version of Internet Explorer. MS backed
down after release of SSLv3.

É Versions of SSL:

É SSL v1 used internally in Netscape (flawed)
É SSL v2 in Navigator 1.0–2.x. Had MIM attacks,

buggy random number generators. 40-bit
encryption was broken.

É SSL v3, 1996. Navigator 3.0, IE 3.0. Added fixes
and more features, including Diffie-Hellman
anonymous key-exchange.

É TLS v1, 1999. Close to SSLv3.



SSL History
É Introduced 1994 by Netscape Navigator (major

selling point).
É Competing S-HTTP launched at same time by

CommerceNet group. S-HTTP designed to work with
Web only. Initially had to be purchased in modified
NCSA Mosaic. S-HTTP sunk.

É Microsoft’s competing attempt PCT was introduced
in first version of Internet Explorer. MS backed
down after release of SSLv3.

É Versions of SSL:

É SSL v1 used internally in Netscape (flawed)
É SSL v2 in Navigator 1.0–2.x. Had MIM attacks,

buggy random number generators. 40-bit
encryption was broken.

É SSL v3, 1996. Navigator 3.0, IE 3.0. Added fixes
and more features, including Diffie-Hellman
anonymous key-exchange.

É TLS v1, 1999. Close to SSLv3.



SSL History
É Introduced 1994 by Netscape Navigator (major

selling point).
É Competing S-HTTP launched at same time by

CommerceNet group. S-HTTP designed to work with
Web only. Initially had to be purchased in modified
NCSA Mosaic. S-HTTP sunk.

É Microsoft’s competing attempt PCT was introduced
in first version of Internet Explorer. MS backed
down after release of SSLv3.

É Versions of SSL:
É SSL v1 used internally in Netscape (flawed)

É SSL v2 in Navigator 1.0–2.x. Had MIM attacks,
buggy random number generators. 40-bit
encryption was broken.

É SSL v3, 1996. Navigator 3.0, IE 3.0. Added fixes
and more features, including Diffie-Hellman
anonymous key-exchange.

É TLS v1, 1999. Close to SSLv3.



SSL History
É Introduced 1994 by Netscape Navigator (major

selling point).
É Competing S-HTTP launched at same time by

CommerceNet group. S-HTTP designed to work with
Web only. Initially had to be purchased in modified
NCSA Mosaic. S-HTTP sunk.

É Microsoft’s competing attempt PCT was introduced
in first version of Internet Explorer. MS backed
down after release of SSLv3.

É Versions of SSL:
É SSL v1 used internally in Netscape (flawed)
É SSL v2 in Navigator 1.0–2.x. Had MIM attacks,

buggy random number generators. 40-bit
encryption was broken.

É SSL v3, 1996. Navigator 3.0, IE 3.0. Added fixes
and more features, including Diffie-Hellman
anonymous key-exchange.

É TLS v1, 1999. Close to SSLv3.



SSL History
É Introduced 1994 by Netscape Navigator (major

selling point).
É Competing S-HTTP launched at same time by

CommerceNet group. S-HTTP designed to work with
Web only. Initially had to be purchased in modified
NCSA Mosaic. S-HTTP sunk.

É Microsoft’s competing attempt PCT was introduced
in first version of Internet Explorer. MS backed
down after release of SSLv3.

É Versions of SSL:
É SSL v1 used internally in Netscape (flawed)
É SSL v2 in Navigator 1.0–2.x. Had MIM attacks,

buggy random number generators. 40-bit
encryption was broken.

É SSL v3, 1996. Navigator 3.0, IE 3.0. Added fixes
and more features, including Diffie-Hellman
anonymous key-exchange.

É TLS v1, 1999. Close to SSLv3.



SSL History
É Introduced 1994 by Netscape Navigator (major

selling point).
É Competing S-HTTP launched at same time by

CommerceNet group. S-HTTP designed to work with
Web only. Initially had to be purchased in modified
NCSA Mosaic. S-HTTP sunk.

É Microsoft’s competing attempt PCT was introduced
in first version of Internet Explorer. MS backed
down after release of SSLv3.

É Versions of SSL:
É SSL v1 used internally in Netscape (flawed)
É SSL v2 in Navigator 1.0–2.x. Had MIM attacks,

buggy random number generators. 40-bit
encryption was broken.

É SSL v3, 1996. Navigator 3.0, IE 3.0. Added fixes
and more features, including Diffie-Hellman
anonymous key-exchange.

É TLS v1, 1999. Close to SSLv3.



TLS cipher suites

Client and server negotiate a cipher suite. Details of
possibilities depend on version of TLS, as well as which
suites supported by client or server.

Authentication v2 RSA public keys & X.509 certificates
v3 anonymous Diffie-Hellman key-exchange

Encryption v2 40-bit RC2, RC4 (“export grade”)
v3 56-bit DES-CBC, 128-bit RC2, RC4,

3DES CBC 168-bit
MAC v2 MD5

v3 SHA

Some browsers let you specify which of their supported
cipher suites you’re willing to use.
The IETF working group are looking at future extensions
for TLS, including supporting the use of OpenPGP keys
as well as X.509 certificates.



TLS handshake protocol outline I
Three phases: hello, key agreement,
authentication.

1. Client hello A→ S: A, A#, Na, CipherPreferences
2. Server hello S→ A: S, S#, Ns, CipherChoice
3. Server certificate S→ A: S,CS
4. Pre-master secret A→ S: {K0 }Ks

5. Client finished A→ S: {Finished,MAC(K1,DataSoFar)}Kas

6. Server finished S→ A: {Finished,MAC(K1,DataSoFar)}Ksa

Commentary:

1. Client hello: Alice sends name, session ID, nonce, cipher
prefs.

2. Server hello: server choose best cipher suite, sends own
data.

3. Server sends certificate CS with public key, which Alice
can check. (Server may ask Alice for certificate here, or
may choose anonymity)



TLS handshake protocol outline I
Three phases: hello, key agreement,
authentication.

1. Client hello A→ S: A, A#, Na, CipherPreferences
2. Server hello S→ A: S, S#, Ns, CipherChoice
3. Server certificate S→ A: S,CS
4. Pre-master secret A→ S: {K0 }Ks

5. Client finished A→ S: {Finished,MAC(K1,DataSoFar)}Kas

6. Server finished S→ A: {Finished,MAC(K1,DataSoFar)}Ksa

Commentary:

1. Client hello: Alice sends name, session ID, nonce, cipher
prefs.

2. Server hello: server choose best cipher suite, sends own
data.

3. Server sends certificate CS with public key, which Alice
can check. (Server may ask Alice for certificate here, or
may choose anonymity)



TLS handshake protocol outline I
Three phases: hello, key agreement,
authentication.

1. Client hello A→ S: A, A#, Na, CipherPreferences
2. Server hello S→ A: S, S#, Ns, CipherChoice
3. Server certificate S→ A: S,CS
4. Pre-master secret A→ S: {K0 }Ks

5. Client finished A→ S: {Finished,MAC(K1,DataSoFar)}Kas

6. Server finished S→ A: {Finished,MAC(K1,DataSoFar)}Ksa

Commentary:

1. Client hello: Alice sends name, session ID, nonce, cipher
prefs.

2. Server hello: server choose best cipher suite, sends own
data.

3. Server sends certificate CS with public key, which Alice
can check. (Server may ask Alice for certificate here, or
may choose anonymity)



TLS handshake protocol outline II
Three phases: hello, key agreement,
authentication.

1. Client hello A→ S: A, A#, Na, CipherPreferences
2. Server hello S→ A: S, S#, Ns, CipherChoice
3. Server certificate S→ A: S,CS
4. Pre-master secret A→ S: {K0 }Ks

5. Client finished A→ S: {Finished,MAC(K1,DataSoFar)}Kas

6. Server finished. S→ A: {Finished,MAC(K1,DataSoFar)}Ksa

Commentary:

4 Alice computes a 48-byte pre-master secret key K0, and
sends to server encrypted under server’s public key.

5,6 Alice and server each compute 6 shared secrets, 3 for
each direction. First, K1 = h(K0,Na,Ns) is the master
secret. Then Kas and Ksa are the symmetric cipher secret
keys (e.g., DES keys) used for encryption thereafter. The
second key is used for the MAC. The third key is an IV
used to initialize the symmetric cipher.



TLS handshake protocol outline II
Three phases: hello, key agreement,
authentication.

1. Client hello A→ S: A, A#, Na, CipherPreferences
2. Server hello S→ A: S, S#, Ns, CipherChoice
3. Server certificate S→ A: S,CS
4. Pre-master secret A→ S: {K0 }Ks

5. Client finished A→ S: {Finished,MAC(K1,DataSoFar)}Kas

6. Server finished. S→ A: {Finished,MAC(K1,DataSoFar)}Ksa

Commentary:

4 Alice computes a 48-byte pre-master secret key K0, and
sends to server encrypted under server’s public key.

5,6 Alice and server each compute 6 shared secrets, 3 for
each direction. First, K1 = h(K0,Na,Ns) is the master
secret. Then Kas and Ksa are the symmetric cipher secret
keys (e.g., DES keys) used for encryption thereafter. The
second key is used for the MAC. The third key is an IV
used to initialize the symmetric cipher.



TLS handshake protocol outline III

É The handshake protocol establishes an SSL
session;

É Alternatively, it allows resumption of an on-going
session in the first step, if Alice’s session id A# is
non-zero and the server agrees to resume the
session by responding with the same value.

É This allows both resuming an SSL communication
and opening another connection without
undergoing key-exchange and authentication
again.
É 2009: vulnerability was discovered in this: the TLS

renegotiation man-in-the-middle attack



Outline

Secure Email: PGP and S/MIME

Issues of trust

Web security: transport

X.509



X.509 Standard
É X.509 is an ITU standard (International Telecoms

Union, formerly the CCITT), part of the X.500 series
which specifies a directory service.

Recommendation X.509
OSI — The Directory: Authentication
Framework.

X.509 specifies a PKI. Version 3 published 1997.

É X.509 certificates have a specification in ASN.1,
but it’s open to some interpretation. This lead to
various “profiles” that pin down choices.

É Examples of profiles: US Federal PKI, various
other governments, and IETF PKIX.

É PKIX is used for S/MIME and SSL. See
http://www.ietf.org/html.charters/
pkix-charter.html

http://www.ietf.org/html.charters/pkix-charter.html
http://www.ietf.org/html.charters/pkix-charter.html


PKIX Distinguished names
É An X.500 distinguished name (DN) is a list of

specific names each with an attribute, which
specifies a path through an X.500 directory.

É X.500 presumed every subject in the world would
have a globally unique DN. Not practical: no single
entity is trusted by everybody (a reason PEM
failed). In PKIX, names have local scope (like DNS
names and IP numbers).

É Standard attribute types are defined in X.520, PKIX
requires that implementations handle some, e.g.:

common name
organizational unit
organization
state or province name
country

I am represented as CN=David Aspinall, OU=School of

Informatics, O=University of Edinburgh, C=Scotland UK.



X.509 Certificates

X.509 certificates have 10 fields:

version v1, v2, or v3
serial number unique amongst certificates issued by a CA

signature alg ID identifies signature algorithm
issuer X.500 DN

validity [start,end] times in UTC (2 digit yr) /
generalised time.

subject X.500 DN
PK info algorithm, parameters and key material

issuer ID bitstream added in v2 to uniquify names
(in case of DN reuse)

subject ID ditto
extensions added in v3, various extra information

signature value the signature proper:
signed hash of fields 1 to 10

Official field name of “signature value” is “Encrypted”



Future: Identifier-based PKs?
É PKIs of either trust model involve vast and unwieldy

chains of trust and certifications. Big expense to set
up and maintain, effort to retrieve certificates
before communications, and verify trust chains.

É Dream future: Identifier-based PKC. A public key
is derived from a user’s identifying information:
Bob’s public key is derived from his e-mail address,
for example. Certification is implicit.

É To read messages, Bob must verify his identity
(once) to an authority to obtain the private key
corresponding to his public key.

É Big advantage: no need to fetch public key securely
or check a trust chain. The relationship between
public-private key pairs is based on a secret held by
the authority that issues private keys.

É For more, see Stanford’s IBE project:
http://crypto.stanford.edu/ibe/

http://crypto.stanford.edu/ibe/


Future: Identifier-based PKs?
É PKIs of either trust model involve vast and unwieldy

chains of trust and certifications. Big expense to set
up and maintain, effort to retrieve certificates
before communications, and verify trust chains.

É Dream future: Identifier-based PKC. A public key
is derived from a user’s identifying information:
Bob’s public key is derived from his e-mail address,
for example. Certification is implicit.

É To read messages, Bob must verify his identity
(once) to an authority to obtain the private key
corresponding to his public key.

É Big advantage: no need to fetch public key securely
or check a trust chain. The relationship between
public-private key pairs is based on a secret held by
the authority that issues private keys.

É For more, see Stanford’s IBE project:
http://crypto.stanford.edu/ibe/

http://crypto.stanford.edu/ibe/


Future: Identifier-based PKs?
É PKIs of either trust model involve vast and unwieldy

chains of trust and certifications. Big expense to set
up and maintain, effort to retrieve certificates
before communications, and verify trust chains.

É Dream future: Identifier-based PKC. A public key
is derived from a user’s identifying information:
Bob’s public key is derived from his e-mail address,
for example. Certification is implicit.

É To read messages, Bob must verify his identity
(once) to an authority to obtain the private key
corresponding to his public key.

É Big advantage: no need to fetch public key securely
or check a trust chain. The relationship between
public-private key pairs is based on a secret held by
the authority that issues private keys.

É For more, see Stanford’s IBE project:
http://crypto.stanford.edu/ibe/

http://crypto.stanford.edu/ibe/


Future: Identifier-based PKs?
É PKIs of either trust model involve vast and unwieldy

chains of trust and certifications. Big expense to set
up and maintain, effort to retrieve certificates
before communications, and verify trust chains.

É Dream future: Identifier-based PKC. A public key
is derived from a user’s identifying information:
Bob’s public key is derived from his e-mail address,
for example. Certification is implicit.

É To read messages, Bob must verify his identity
(once) to an authority to obtain the private key
corresponding to his public key.

É Big advantage: no need to fetch public key securely
or check a trust chain. The relationship between
public-private key pairs is based on a secret held by
the authority that issues private keys.

É For more, see Stanford’s IBE project:
http://crypto.stanford.edu/ibe/

http://crypto.stanford.edu/ibe/


Future: Identifier-based PKs?
É PKIs of either trust model involve vast and unwieldy

chains of trust and certifications. Big expense to set
up and maintain, effort to retrieve certificates
before communications, and verify trust chains.

É Dream future: Identifier-based PKC. A public key
is derived from a user’s identifying information:
Bob’s public key is derived from his e-mail address,
for example. Certification is implicit.

É To read messages, Bob must verify his identity
(once) to an authority to obtain the private key
corresponding to his public key.

É Big advantage: no need to fetch public key securely
or check a trust chain. The relationship between
public-private key pairs is based on a secret held by
the authority that issues private keys.

É For more, see Stanford’s IBE project:
http://crypto.stanford.edu/ibe/

http://crypto.stanford.edu/ibe/


References

Jalal Feghhi, Jalil Feghhi, and Peter Williams. Digital
Certificates — Applied Internet Security.
Addison-Wesley, 1999.

Aviel Rubin, Daniel Geer, and Marcus J Ranum. Web
Security Sourcebook.
John Wiley & Sons, 1997.

Lincoln D Stein. Web Security — A Step-by-Step
Reference Guide.
Addison-Wesley, 1998.


	Secure Email: PGP and S/MIME
	Issues of trust
	Web security: transport
	X.509

