
Programming Securely II
Computer Security Lecture 14

David Aspinall

School of Informatics
University of Edinburgh

14th March 2013



Outline

Web security issues

Java Security: Coding and Models

Trusting code

Language futures for security



Programming and Security

Programming Securely To develop code in a secure

manner so that the code itself is not a

vulnerability that can be exploited by an

attacker.

Programming Security To develop code for

security-specific functions such as encryption,

digital signatures, firewalls, etc.

In this lecture, we look at both sides:

◮ continuing programming securely: some web

application security issues and some Java

guidelines.

◮ programming security: overview of Java security

APIs and current and future trust models.



Outline

Web security issues

Java Security: Coding and Models

Trusting code

Language futures for security



Web security: client-side threats
◮ Risky treatment of MIME-types: e.g.,

shell-escapes in troff. By design, downloaded

active content (e.g., Java, ActiveX controls)

should run in a restricted environment. Problems

come when restrictions fail, or aren’t tight enough.



Web security: client-side threats
◮ Risky treatment of MIME-types: e.g.,

shell-escapes in troff. By design, downloaded

active content (e.g., Java, ActiveX controls)

should run in a restricted environment. Problems

come when restrictions fail, or aren’t tight enough.

◮ SSL issues: revoked certificates, spoofed site

names, mixed encrypted/unencrypted pages.



Web security: client-side threats
◮ Risky treatment of MIME-types: e.g.,

shell-escapes in troff. By design, downloaded

active content (e.g., Java, ActiveX controls)

should run in a restricted environment. Problems

come when restrictions fail, or aren’t tight enough.

◮ SSL issues: revoked certificates, spoofed site

names, mixed encrypted/unencrypted pages.

◮ Browsers store cookies which have confidentiality

implications. Even without cookies, web browsing is

less anonymous than it feels: information is stored

in browser’s history and document cache, firewall

and proxy logs, and the remote sites visited, even

before any spyware is present. (All great for market

researchers).



Web security: client-side threats
◮ Risky treatment of MIME-types: e.g.,

shell-escapes in troff. By design, downloaded

active content (e.g., Java, ActiveX controls)

should run in a restricted environment. Problems

come when restrictions fail, or aren’t tight enough.

◮ SSL issues: revoked certificates, spoofed site

names, mixed encrypted/unencrypted pages.

◮ Browsers store cookies which have confidentiality

implications. Even without cookies, web browsing is

less anonymous than it feels: information is stored

in browser’s history and document cache, firewall

and proxy logs, and the remote sites visited, even

before any spyware is present. (All great for market

researchers).

◮ Untrained users unwittingly make bad security

decisions.



Web security: client-side threats
◮ Risky treatment of MIME-types: e.g.,

shell-escapes in troff. By design, downloaded

active content (e.g., Java, ActiveX controls)

should run in a restricted environment. Problems

come when restrictions fail, or aren’t tight enough.

◮ SSL issues: revoked certificates, spoofed site

names, mixed encrypted/unencrypted pages.

◮ Browsers store cookies which have confidentiality

implications. Even without cookies, web browsing is

less anonymous than it feels: information is stored

in browser’s history and document cache, firewall

and proxy logs, and the remote sites visited, even

before any spyware is present. (All great for market

researchers).

◮ Untrained users unwittingly make bad security

decisions.

◮ Buggy browsers: buffer overflows, crypto bugs, etc.



Web security: server-side threats

◮ Access control: should prevent certain files being

served.



Web security: server-side threats

◮ Access control: should prevent certain files being

served.

◮ Complex or malicious URLs



Web security: server-side threats

◮ Access control: should prevent certain files being

served.

◮ Complex or malicious URLs

◮ Denial of service attacks



Web security: server-side threats

◮ Access control: should prevent certain files being

served.

◮ Complex or malicious URLs

◮ Denial of service attacks

◮ Remote authoring and administration tools



Web security: server-side threats

◮ Access control: should prevent certain files being

served.

◮ Complex or malicious URLs

◮ Denial of service attacks

◮ Remote authoring and administration tools

◮ Buggy servers, with attendant security risks



Web security: server-side threats

◮ Access control: should prevent certain files being

served.

◮ Complex or malicious URLs

◮ Denial of service attacks

◮ Remote authoring and administration tools

◮ Buggy servers, with attendant security risks

◮ Server-side scripting languages: C or shell CGI,

PHP, ASP, JSP, Python, Ruby, all have serious

security implications in configuration and

execution. File systems and permissions have to be

carefully designed. That’s before any implemented

web application is even considered. . .



Web programming: application security

Many issues (some of which are introduced in the

practical).



Web programming: application security

Many issues (some of which are introduced in the

practical).

◮ Input validation: to prevent SQL injection,

command injection, other confidentiality attacks.

Ajax: beware client-side validation! Understand

metacharacters at every point. Use labels/indexes

for hidden values, not values themselves.



Web programming: application security

Many issues (some of which are introduced in the

practical).

◮ Input validation: to prevent SQL injection,

command injection, other confidentiality attacks.

Ajax: beware client-side validation! Understand

metacharacters at every point. Use labels/indexes

for hidden values, not values themselves.

◮ Output filtering: cross-site scripting (XSS), when

attacker-generated HTML appears on site: used for

session hijacking, phishing attacks. Beware passing

informative error messages.



Web programming: application security

Many issues (some of which are introduced in the

practical).

◮ Input validation: to prevent SQL injection,

command injection, other confidentiality attacks.

Ajax: beware client-side validation! Understand

metacharacters at every point. Use labels/indexes

for hidden values, not values themselves.

◮ Output filtering: cross-site scripting (XSS), when

attacker-generated HTML appears on site: used for

session hijacking, phishing attacks. Beware passing

informative error messages.

◮ Careful cryptography: encryption/hashing to

protect server state in client, use of appropriate

authenticationmechanisms for web accounts

(never Referer header).



Outline

Web security issues

Java Security: Coding and Models

Trusting code

Language futures for security



Java Secure Coding Guidelines
◮ Using modifiers. Reduce scope of methods and

fields; beware non-final public static (global)

variables; avoid public fields, and add security

checks to public accessors.



Java Secure Coding Guidelines
◮ Using modifiers. Reduce scope of methods and

fields; beware non-final public static (global)

variables; avoid public fields, and add security

checks to public accessors.
◮ Protecting packages. Stop insertion of untrusted

classes in a package using java.security properties

or “sealed” JAR file; avoid package-level access.



Java Secure Coding Guidelines
◮ Using modifiers. Reduce scope of methods and

fields; beware non-final public static (global)

variables; avoid public fields, and add security

checks to public accessors.
◮ Protecting packages. Stop insertion of untrusted

classes in a package using java.security properties

or “sealed” JAR file; avoid package-level access.
◮ Beware mutable objects. Returning or storing

mutables may be risky, if caller then updates them;

use immutable or cloned objects instead.



Java Secure Coding Guidelines
◮ Using modifiers. Reduce scope of methods and

fields; beware non-final public static (global)

variables; avoid public fields, and add security

checks to public accessors.
◮ Protecting packages. Stop insertion of untrusted

classes in a package using java.security properties

or “sealed” JAR file; avoid package-level access.
◮ Beware mutable objects. Returning or storing

mutables may be risky, if caller then updates them;

use immutable or cloned objects instead.
◮ Serialization. Once serialized, objects are outside

JVM security. Designate transient fields and

encrypt/sign persistent data. Beware overriding of

serialization methods (among others).



Java Secure Coding Guidelines
◮ Using modifiers. Reduce scope of methods and

fields; beware non-final public static (global)

variables; avoid public fields, and add security

checks to public accessors.
◮ Protecting packages. Stop insertion of untrusted

classes in a package using java.security properties

or “sealed” JAR file; avoid package-level access.
◮ Beware mutable objects. Returning or storing

mutables may be risky, if caller then updates them;

use immutable or cloned objects instead.
◮ Serialization. Once serialized, objects are outside

JVM security. Designate transient fields and

encrypt/sign persistent data. Beware overriding of

serialization methods (among others).
◮ Clear sensitive information. Store sensitive data

in mutable objects, then clear explicitly ASAP, to

prevent heap-inspection attacks. Can’t rely on

Java’s garbage collection to do this.



Java Secure Coding Guidelines
◮ Using modifiers. Reduce scope of methods and

fields; beware non-final public static (global)

variables; avoid public fields, and add security

checks to public accessors.
◮ Protecting packages. Stop insertion of untrusted

classes in a package using java.security properties

or “sealed” JAR file; avoid package-level access.
◮ Beware mutable objects. Returning or storing

mutables may be risky, if caller then updates them;

use immutable or cloned objects instead.
◮ Serialization. Once serialized, objects are outside

JVM security. Designate transient fields and

encrypt/sign persistent data. Beware overriding of

serialization methods (among others).
◮ Clear sensitive information. Store sensitive data

in mutable objects, then clear explicitly ASAP, to

prevent heap-inspection attacks. Can’t rely on

Java’s garbage collection to do this.
◮ See Oracle/CERT Secure Coding Guidelines

https://www.securecoding.cert.org


Access Control in Java
Java 1.0 had a sandbox security model, where

downloaded Java applets ran in a restricted

environment with no access to local files, etc: often too

restrictive. Java 2 has a more flexible, fine-grained level

of control: Applications and applets

are subject to a security

policy which specifies

protection domains

based on location of

code, whether it is

signed by a trusted

entity, and the user

identity. Each domain

specifies a set of per-

missions for accessing

resources.

This picture is reproduced from the Java Security Tutorial (c) Sun



Java security architecture
◮ A SecurityManager is installed by web browsers for

Java applets; an application must either itself install

the security manager, or be invoked with the option

-Djava.security.manager. If the security

manager’s checks fail, a

java.lang.SecurityException is raised.
◮ Access control in Java is based on protection

domains which group together the set of objects

which are currently accessible by a principal.

Class Domain Permissions

A.class

B.class domain X permissions X

C.class

D.class domain Y permissions Y

E.class



Java access control permissions

◮ Domains are associated with sets of permissions
java.security.AllPermission every resource

java.io.FilePermission file system access

java.net.SocketPermission accept/connect based on host/IP & port

java.awt.AWTPermission window-system permissions

java.lang.RuntimePermission JVM config; threads; printing

java.security. accessing security policy,

SecurityPermission key store



Java access control permissions

◮ Domains are associated with sets of permissions
java.security.AllPermission every resource

java.io.FilePermission file system access

java.net.SocketPermission accept/connect based on host/IP & port

java.awt.AWTPermission window-system permissions

java.lang.RuntimePermission JVM config; threads; printing

java.security. accessing security policy,

SecurityPermission key store

◮ Some are associated with target and actions:



Java access control permissions

◮ Domains are associated with sets of permissions
java.security.AllPermission every resource

java.io.FilePermission file system access

java.net.SocketPermission accept/connect based on host/IP & port

java.awt.AWTPermission window-system permissions

java.lang.RuntimePermission JVM config; threads; printing

java.security. accessing security policy,

SecurityPermission key store

◮ Some are associated with target and actions:

import java.io.FilePermission;
FilePermission p1 = new

FilePermission("/tmp/myfile", "read");
FilePermission p2 = new

FilePermission("/tmp/*", "read");



Java access control permissions

◮ Domains are associated with sets of permissions
java.security.AllPermission every resource

java.io.FilePermission file system access

java.net.SocketPermission accept/connect based on host/IP & port

java.awt.AWTPermission window-system permissions

java.lang.RuntimePermission JVM config; threads; printing

java.security. accessing security policy,

SecurityPermission key store

◮ Some are associated with target and actions:

import java.io.FilePermission;
FilePermission p1 = new

FilePermission("/tmp/myfile", "read");
FilePermission p2 = new

FilePermission("/tmp/*", "read");



Java access control permissions

◮ Domains are associated with sets of permissions
java.security.AllPermission every resource

java.io.FilePermission file system access

java.net.SocketPermission accept/connect based on host/IP & port

java.awt.AWTPermission window-system permissions

java.lang.RuntimePermission JVM config; threads; printing

java.security. accessing security policy,

SecurityPermission key store

◮ Some are associated with target and actions:

import java.io.FilePermission;
FilePermission p1 = new

FilePermission("/tmp/myfile", "read");
FilePermission p2 = new

FilePermission("/tmp/*", "read");

Permissions implement an implies method for

access control decisions. Here p2.implies(p1).



Java security policies

◮ The system security policy for a Java application

environment specifies permissions available for

code from various sources, represented by a

Policy object. Only one in effect at a time.

◮ A Policy object evaluates the global policy using

the ProtectionDomain for a class, and returns an

appropriate Permissions object.
◮ Java supplies a GUI policytool utility for editing
ASCII format policy files, with entries like this,
specifying a key store and zero or more “grant”
entries:
keystore ".keystore", "JKS";
grant principal com.sun.security.auth.UnixPrincipal "da" {

permission java.util.PropertyPermission "java.home", "read";
permission java.io.FilePermission "/tmp/foo", "read,write";

};

Default, system policy is in

javahome/lib/security/java.policy. User policy is in

userhome.java.policy.



Java security extensions
◮ The Java security extensions add additional APIs for

programming security features.



Java security extensions
◮ The Java security extensions add additional APIs for

programming security features.
◮ Java Cryptography Extension (JCE)

A Java framework for cryptographic functionality,

including message digests, encryption, signing, and

X.509 certificates.



Java security extensions
◮ The Java security extensions add additional APIs for

programming security features.
◮ Java Cryptography Extension (JCE)

A Java framework for cryptographic functionality,

including message digests, encryption, signing, and

X.509 certificates.
◮ Java Secure Socket Extension (JSSE).



Java security extensions
◮ The Java security extensions add additional APIs for

programming security features.
◮ Java Cryptography Extension (JCE)

A Java framework for cryptographic functionality,

including message digests, encryption, signing, and

X.509 certificates.
◮ Java Secure Socket Extension (JSSE).
◮ Java Authentication and Authorization Service

(JAAS). Used for “reliable and secure”

authentication of users, to determine who is

currently executing Java code; and for authorization

of users to ensure they have the permissions

necessary for desired actions.



Java security extensions
◮ The Java security extensions add additional APIs for

programming security features.
◮ Java Cryptography Extension (JCE)

A Java framework for cryptographic functionality,

including message digests, encryption, signing, and

X.509 certificates.
◮ Java Secure Socket Extension (JSSE).
◮ Java Authentication and Authorization Service

(JAAS). Used for “reliable and secure”

authentication of users, to determine who is

currently executing Java code; and for authorization

of users to ensure they have the permissions

necessary for desired actions.
◮ Java GSS-API. Bindings for Generic Security

Service API (RFC2853). Used for securely

exchanging messages between communicating

applications, using various underlying mechanisms

(e.g., Kerberos).



Java Cryptography Extension (JCE)
◮ Crypto framework. A provider plug-in architecture

allows multiple simultaneous implementations.

Inclusion restricted because of import/export

restrictions.



Java Cryptography Extension (JCE)
◮ Crypto framework. A provider plug-in architecture

allows multiple simultaneous implementations.

Inclusion restricted because of import/export

restrictions.

◮ Has algorithm independence, clients don’t need to

understand algorithms; abstract “engine” classes

provide different services.



Java Cryptography Extension (JCE)
◮ Crypto framework. A provider plug-in architecture

allows multiple simultaneous implementations.

Inclusion restricted because of import/export

restrictions.

◮ Has algorithm independence, clients don’t need to

understand algorithms; abstract “engine” classes

provide different services.

◮ Service provider interfaces (SPIs) added statically

or dynamically; clients query installed providers to

find out supported services. JVM and clients specify

preference orders.



Java Cryptography Extension (JCE)
◮ Crypto framework. A provider plug-in architecture

allows multiple simultaneous implementations.

Inclusion restricted because of import/export

restrictions.

◮ Has algorithm independence, clients don’t need to

understand algorithms; abstract “engine” classes

provide different services.

◮ Service provider interfaces (SPIs) added statically

or dynamically; clients query installed providers to

find out supported services. JVM and clients specify

preference orders.

◮ Key management is through a “keystore” database.

Different providers may have different formats.



Java Cryptography Extension (JCE)
◮ Crypto framework. A provider plug-in architecture

allows multiple simultaneous implementations.

Inclusion restricted because of import/export

restrictions.

◮ Has algorithm independence, clients don’t need to

understand algorithms; abstract “engine” classes

provide different services.

◮ Service provider interfaces (SPIs) added statically

or dynamically; clients query installed providers to

find out supported services. JVM and clients specify

preference orders.

◮ Key management is through a “keystore” database.

Different providers may have different formats.

◮ SUN provider implements common formats and

proprietary keystore type JKS.



Java Cryptography Extension (JCE)
◮ Crypto framework. A provider plug-in architecture

allows multiple simultaneous implementations.

Inclusion restricted because of import/export

restrictions.

◮ Has algorithm independence, clients don’t need to

understand algorithms; abstract “engine” classes

provide different services.

◮ Service provider interfaces (SPIs) added statically

or dynamically; clients query installed providers to

find out supported services. JVM and clients specify

preference orders.

◮ Key management is through a “keystore” database.

Different providers may have different formats.

◮ SUN provider implements common formats and

proprietary keystore type JKS.

◮ See: javax.crypto, javax.crypto.interfaces,

javax.crypto.spec.



JCE cryptography services

◮ A cryptography service is associated with a

particular algorithm or type, and manipulates or

generates data, keys, algorithm parameters,

keystores, or certificates.



JCE cryptography services

◮ A cryptography service is associated with a

particular algorithm or type, and manipulates or

generates data, keys, algorithm parameters,

keystores, or certificates.

◮ Engine classes include:
MessageDigest generate message digests (MDCs)

Signature sign data and verify digital signatures.

KeyPairGenerator generate public-private key-pair.

CertificateFactory create certificates and CRLs.

KeyStore create and manage key databases.

AlgorithmParameters manage parameters for an algorithm.

SecureRandom random or pseudo-random numbers.



JCE cryptography services

◮ A cryptography service is associated with a

particular algorithm or type, and manipulates or

generates data, keys, algorithm parameters,

keystores, or certificates.

◮ Engine classes include:
MessageDigest generate message digests (MDCs)

Signature sign data and verify digital signatures.

KeyPairGenerator generate public-private key-pair.

CertificateFactory create certificates and CRLs.

KeyStore create and manage key databases.

AlgorithmParameters manage parameters for an algorithm.

SecureRandom random or pseudo-random numbers.

◮ Factory methods in engine classes are used to

return instances of the class, e.g.

Signature.getInstance("SHA1withDSA").



Java Secure Socket Extension (JSSE)

◮ The JSSE is also based on a provider plug-in

architecture.

◮ Has a simple structure. Main use is with SSL client

sockets, SSL server sockets, and SSL session

handles. Sample classes:
SSLSocket socket for SSL/TLS/WTLS protocols

SSLSocketFactory factory for SSLSocket objects

SSLServerSocket sever socket for SSL/TLS/WTLS

· · · Factory factory for SSLServerSockets

SSLSession encapsulation of SSL session

◮ Creating SSL client or server sockets is as easy as

creating ordinary Java TCP/IP sockets: each SSL

class extends the corresponding ordinary TCP

socket class, and provides a few extra hooks for

setting security parameters.

◮ See javax.net.ssl, also javax.net and

javax.security.cert.



Authentication and Authorization (JAAS)

◮ JAAS has a pluggable architecture; applications

independent of underlying authentication methods.

Implementation is decided at runtime, in a login

configuration file.



Authentication and Authorization (JAAS)

◮ JAAS has a pluggable architecture; applications

independent of underlying authentication methods.

Implementation is decided at runtime, in a login

configuration file.

◮ A Subject may have multiple identities; each is a

Principal (name). Subjects own public and private

credentials (e.g., key material).



Authentication and Authorization (JAAS)

◮ JAAS has a pluggable architecture; applications

independent of underlying authentication methods.

Implementation is decided at runtime, in a login

configuration file.

◮ A Subject may have multiple identities; each is a

Principal (name). Subjects own public and private

credentials (e.g., key material).

◮ To authenticate, a LoginContext object is created,

which then consults a configuration to load the

required LoginModules. To authenticate a subject

the login method is invoked for each module.



Authentication and Authorization (JAAS)

◮ JAAS has a pluggable architecture; applications

independent of underlying authentication methods.

Implementation is decided at runtime, in a login

configuration file.

◮ A Subject may have multiple identities; each is a

Principal (name). Subjects own public and private

credentials (e.g., key material).

◮ To authenticate, a LoginContext object is created,

which then consults a configuration to load the

required LoginModules. To authenticate a subject

the login method is invoked for each module.

◮ Authorization happens when a subject is

associated with a thread’s AccessControlContext

using the doAs methods for performing actions

(java.security.PrivilegedAction.run). Then

principal-based entries in the current security policy

are used.



Flaws in the Java infrastructure

◮ Java was touted from the start as a secure

mechanism for mobile code. But it has suffered

from flaws in both design and implementation,

surveyed in 1999 by McGraw and Felten in Securing

Java, see http://www.securingjava.com.

http://www.securingjava.com


Flaws in the Java infrastructure

◮ Java was touted from the start as a secure

mechanism for mobile code. But it has suffered

from flaws in both design and implementation,

surveyed in 1999 by McGraw and Felten in Securing

Java, see http://www.securingjava.com.

◮ Most fundamental are any problems in the Byte
Code Verifier, which checks proper use of JVML
(protecting against “malicious” or merely buggy
compilers):

http://www.securingjava.com


Flaws in the Java infrastructure

◮ Java was touted from the start as a secure

mechanism for mobile code. But it has suffered

from flaws in both design and implementation,

surveyed in 1999 by McGraw and Felten in Securing

Java, see http://www.securingjava.com.

◮ Most fundamental are any problems in the Byte
Code Verifier, which checks proper use of JVML
(protecting against “malicious” or merely buggy
compilers):

http://www.securingjava.com


Flaws in the Java infrastructure

◮ Java was touted from the start as a secure

mechanism for mobile code. But it has suffered

from flaws in both design and implementation,

surveyed in 1999 by McGraw and Felten in Securing

Java, see http://www.securingjava.com.

◮ Most fundamental are any problems in the Byte
Code Verifier, which checks proper use of JVML
(protecting against “malicious” or merely buggy
compilers):
◮ no operand stack overflow/underflow

http://www.securingjava.com


Flaws in the Java infrastructure

◮ Java was touted from the start as a secure

mechanism for mobile code. But it has suffered

from flaws in both design and implementation,

surveyed in 1999 by McGraw and Felten in Securing

Java, see http://www.securingjava.com.

◮ Most fundamental are any problems in the Byte
Code Verifier, which checks proper use of JVML
(protecting against “malicious” or merely buggy
compilers):
◮ no operand stack overflow/underflow
◮ correct types and conversions

http://www.securingjava.com


Flaws in the Java infrastructure

◮ Java was touted from the start as a secure

mechanism for mobile code. But it has suffered

from flaws in both design and implementation,

surveyed in 1999 by McGraw and Felten in Securing

Java, see http://www.securingjava.com.

◮ Most fundamental are any problems in the Byte
Code Verifier, which checks proper use of JVML
(protecting against “malicious” or merely buggy
compilers):
◮ no operand stack overflow/underflow
◮ correct types and conversions
◮ field accesses obey visibility modifiers

http://www.securingjava.com


Flaws in the Java infrastructure

◮ Java was touted from the start as a secure

mechanism for mobile code. But it has suffered

from flaws in both design and implementation,

surveyed in 1999 by McGraw and Felten in Securing

Java, see http://www.securingjava.com.

◮ Most fundamental are any problems in the Byte
Code Verifier, which checks proper use of JVML
(protecting against “malicious” or merely buggy
compilers):
◮ no operand stack overflow/underflow
◮ correct types and conversions
◮ field accesses obey visibility modifiers

http://www.securingjava.com


Flaws in the Java infrastructure

◮ Java was touted from the start as a secure

mechanism for mobile code. But it has suffered

from flaws in both design and implementation,

surveyed in 1999 by McGraw and Felten in Securing

Java, see http://www.securingjava.com.

◮ Most fundamental are any problems in the Byte
Code Verifier, which checks proper use of JVML
(protecting against “malicious” or merely buggy
compilers):
◮ no operand stack overflow/underflow
◮ correct types and conversions
◮ field accesses obey visibility modifiers

Type safety relies on byte code verification being

correct. Unfortunately getting this right is

complicated. . .

http://www.securingjava.com


Flaws in Java itself – continued
◮ The Java Language Specification is written in
English. It suffers from usual problems of large
language specifications: missing details, ambiguity,
and other inaccuracies.



Flaws in Java itself – continued
◮ The Java Language Specification is written in
English. It suffers from usual problems of large
language specifications: missing details, ambiguity,
and other inaccuracies.
◮ Sun BUG ID 6360463 (Dec 05): “offset item of the
stack map frame” not defined in specification
. . . “renders most of discussion on type checking
moot”



Flaws in Java itself – continued
◮ The Java Language Specification is written in
English. It suffers from usual problems of large
language specifications: missing details, ambiguity,
and other inaccuracies.
◮ Sun BUG ID 6360463 (Dec 05): “offset item of the
stack map frame” not defined in specification
. . . “renders most of discussion on type checking
moot”

◮ Sun’s implementations are usually taken as the
reference behaviour. But these have had a series of
type safety and access control failings (from 1.x
SDKs to J2ME in mobile phone KVMs).



Flaws in Java itself – continued
◮ The Java Language Specification is written in
English. It suffers from usual problems of large
language specifications: missing details, ambiguity,
and other inaccuracies.
◮ Sun BUG ID 6360463 (Dec 05): “offset item of the
stack map frame” not defined in specification
. . . “renders most of discussion on type checking
moot”

◮ Sun’s implementations are usually taken as the
reference behaviour. But these have had a series of
type safety and access control failings (from 1.x
SDKs to J2ME in mobile phone KVMs).
◮ 8th Feb 2006, CVE-2006-0614,0615,0617: Sun fixes
seven vulnerabilities in current JREs which allowed
remote code to bypass sandbox using reflection.



Flaws in Java itself – continued
◮ The Java Language Specification is written in
English. It suffers from usual problems of large
language specifications: missing details, ambiguity,
and other inaccuracies.
◮ Sun BUG ID 6360463 (Dec 05): “offset item of the
stack map frame” not defined in specification
. . . “renders most of discussion on type checking
moot”

◮ Sun’s implementations are usually taken as the
reference behaviour. But these have had a series of
type safety and access control failings (from 1.x
SDKs to J2ME in mobile phone KVMs).
◮ 8th Feb 2006, CVE-2006-0614,0615,0617: Sun fixes
seven vulnerabilities in current JREs which allowed
remote code to bypass sandbox using reflection.

◮ Shows defence in depth is important; even with a

careful Java security policy restricting what

downloaded code can do, you should still beware

untrusted code.



Outline

Web security issues

Java Security: Coding and Models

Trusting code

Language futures for security



The Trusted Computing Base

Trusted Computing Base (TCB)

The set of all components (harware, software, human,

. . . ) whose correct functioning is sufficient to ensure

that the security policy is enforced.

◮ Equivalently: failure of the TCB causes failure of

security.

Misplaced trust can hurt you!

◮ This motivates design principles for the TCB:
◮ make it as small as possible
◮ do not change it often
◮ verify it carefully: so it is as secure as possible

◮ In access control systems, the TCB is the

Reference Monitor implementation.



Palladium/TCPA/NGSCB/Trustworthy Computing
◮ PCs now contain a Trusted Platform Module

(TPM) security chip with embedded master keys.



Palladium/TCPA/NGSCB/Trustworthy Computing
◮ PCs now contain a Trusted Platform Module

(TPM) security chip with embedded master keys.
◮ Security model idea: PC boots, hashing BIOS, OS

and application code. Builds a chain of trust.



Palladium/TCPA/NGSCB/Trustworthy Computing
◮ PCs now contain a Trusted Platform Module

(TPM) security chip with embedded master keys.
◮ Security model idea: PC boots, hashing BIOS, OS

and application code. Builds a chain of trust.
◮ Protection domains in OS extended into hardware

(secure keyboard reading, sound channels). Desire:

close down an open system (cf XBox).



Palladium/TCPA/NGSCB/Trustworthy Computing
◮ PCs now contain a Trusted Platform Module

(TPM) security chip with embedded master keys.
◮ Security model idea: PC boots, hashing BIOS, OS

and application code. Builds a chain of trust.
◮ Protection domains in OS extended into hardware

(secure keyboard reading, sound channels). Desire:

close down an open system (cf XBox).
◮ Allows certificates, e.g. “this document created

with v 1751 of MS Word, on Windows Vista Trusted,

27th August 2008, on Dell Megaplex ZZ5 S/N

5091237896”. Files stored encrypted, cannot be

decrypted on other machines.



Palladium/TCPA/NGSCB/Trustworthy Computing
◮ PCs now contain a Trusted Platform Module

(TPM) security chip with embedded master keys.
◮ Security model idea: PC boots, hashing BIOS, OS

and application code. Builds a chain of trust.
◮ Protection domains in OS extended into hardware

(secure keyboard reading, sound channels). Desire:

close down an open system (cf XBox).
◮ Allows certificates, e.g. “this document created

with v 1751 of MS Word, on Windows Vista Trusted,

27th August 2008, on Dell Megaplex ZZ5 S/N

5091237896”. Files stored encrypted, cannot be

decrypted on other machines.
◮ Many uses. Strong anti-privacy measures. Business

clients: financial services, government, and

healthcare. Home PC users: reduction in spyware,

digital rights management (DRM). New uses:

renting, lending, time-limited, etc. Considerable

controversy (Stallman: “Treacherous Computing”).



Outline

Web security issues

Java Security: Coding and Models

Trusting code

Language futures for security



Language-based security

An active research area: applying programming

language theory, designing new constructs and

mechanisms.

Most work applies verification technology including

static analysis, extended type systems and theorem

proving.

◮ Proof-carrying code (PCC), which equips code with

independently checkable safety certificates.



Language-based security

An active research area: applying programming

language theory, designing new constructs and

mechanisms.

Most work applies verification technology including

static analysis, extended type systems and theorem

proving.

◮ Proof-carrying code (PCC), which equips code with

independently checkable safety certificates.

◮ Cyclone, Vault and others.

Add richer, safer and more expressive typing and

annotations to existing languages.



Language-based security

An active research area: applying programming

language theory, designing new constructs and

mechanisms.

Most work applies verification technology including

static analysis, extended type systems and theorem

proving.

◮ Proof-carrying code (PCC), which equips code with

independently checkable safety certificates.

◮ Cyclone, Vault and others.

Add richer, safer and more expressive typing and

annotations to existing languages.

◮ Other security specialised typing includes:



Language-based security

An active research area: applying programming

language theory, designing new constructs and

mechanisms.

Most work applies verification technology including

static analysis, extended type systems and theorem

proving.

◮ Proof-carrying code (PCC), which equips code with

independently checkable safety certificates.

◮ Cyclone, Vault and others.

Add richer, safer and more expressive typing and

annotations to existing languages.

◮ Other security specialised typing includes:
◮ detecting and preventing illegal information flows



Language-based security

An active research area: applying programming

language theory, designing new constructs and

mechanisms.

Most work applies verification technology including

static analysis, extended type systems and theorem

proving.

◮ Proof-carrying code (PCC), which equips code with

independently checkable safety certificates.

◮ Cyclone, Vault and others.

Add richer, safer and more expressive typing and

annotations to existing languages.

◮ Other security specialised typing includes:
◮ detecting and preventing illegal information flows
◮ ensuring authentication before authorisation



Language-based security

An active research area: applying programming

language theory, designing new constructs and

mechanisms.

Most work applies verification technology including

static analysis, extended type systems and theorem

proving.

◮ Proof-carrying code (PCC), which equips code with

independently checkable safety certificates.

◮ Cyclone, Vault and others.

Add richer, safer and more expressive typing and

annotations to existing languages.

◮ Other security specialised typing includes:
◮ detecting and preventing illegal information flows
◮ ensuring authentication before authorisation
◮ fixing patterns of access control, e.g. close file
after opening.



References

Mark G. Graff and Kenneth R. van Wyk.

Secure Coding: Principles & Practices.

O’Reilly, 2003.

Sverre H. Huseby.

Innocent Code: a security wake-up call for web

programmers.

Wiley.

Gary McGraw.

Securing Java.

John Wiley & Sons, 1999.

Recommended Reading

For web programming: Huseby’s book, or the more

recent information at OWASP, https://www.owasp.org.

For Java security: the Oracle/CERT guidelines at

https://www.securecoding.cert.org

https://www.owasp.org
https://www.securecoding.cert.org

	Web security issues
	Java Security: Coding and Models
	Trusting code
	Language futures for security

