
Protocols I
Computer Security Lecture 7

David Aspinall

School of Informatics
University of Edinburgh

7th February 2013

Outline

Introducing protocols

Simple authentication
Password security

Authentication with shared keys
Simple shared-key authentication
Challenge and response
Timestamps

Summary

Protocols and attacks
◮ A security protocol is a sequence of
communications that two or more principals
undertake to achieve a security objective.
◮ Protocols may be 1-pass or multi-pass.

◮ Principals: people, organizations, systems, . . .
◮ The objective may be authentication, exchange
of secrets, or some larger task.
◮ Authentication may be unilateral or mutual.

◮ Protocols have been one of the richest areas of
study in computer security research.
◮ Design, verification, and breaking.

◮ Protocols can be carefully designed, yet still have
surprising flaws. A “flaw” means that the protocol
can be attacked in a way that the designer did not
intend or imagine.

◮ This lecture introduces some simple protocols and
common flaws.

Understanding protocols

◮ To understand a protocol, you need to think
carefully about the underlying assumptions, the
initial setup and what happens at each stage.

◮ Usual assumptions include:
◮ secrets, private keys known only by those intended
◮ Dolev-Yao Attacker model: may read, delete,
copy, invent messages, but not break crypto

◮ At each step in the protocol, the beliefs of
participants change and justify the next step. If
something goes wrong, the protocol is aborted.

◮ This reasoning can be made formal with specialised
logics and calculi for reasoning about protocol
correctness. Formal protocol analysis has been a
big success, uncovering flaws in real protocols that
had been hidden for many years.

Authentication protocols

◮ Authentication protocols are a common type of
protocol familiar to most users.

◮ Recall their characterization based upon the thing
used to achieve successful authentication:
1. Something you are: e.g., biometrics such as

fingerprints, iris scans, face recognition, typing
behaviour, . . .

2. Something you have: may be hard tokens such as
smartcards and mobile phones, soft tokens such
as Kerberos tickets.

3. Something you know: e.g., passwords, PINs,
passphrases, challenge questions, . . .

◮ When multiple (independent) methods are used
simultaneously, it is called multi-factor
authentication.

Password authentication
◮ The most common protocol most users know is
logging in to a computer system, by giving a
username and password.

◮ There are two principals involved: Alice (A) and the
server (S). Alice sends the server her login name
alice and password b1aZfa9s. In protocol
notation,

A→ S: A, P

Alice’s (login) name is also written as A, and P
stands for her password. Diagrammatically:

A S

A,P

◮ The server then verifies Alice’s password, and if it is
correct, it lets her in to the system.



Password authentication: points of attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)
◮ Social engineering (e.g., phishing)
◮ Server impersonation to Alice (phony web site, or
fake login device)

◮ On communication channel
◮ Eavesdropping

◮ At the Server
◮ Impersonation (online guessing)
◮ Denial of Service (DoS)

◮ At the Server’s database
◮ Theft
◮ Offline guessing
◮ Alter information
◮ Delete information

Understanding password authentication

◮ Initial assumptions: Alice’s password is a shared
secret: it is known only to Alice and the server and
neither party reveal the secret to anyone else.

◮ Provided the protocol is secure so that this
confidentiality is maintained while she logs in, then
an attacker cannot ever learn Alice’s password.

◮ Therefore, a principal demonstrating knowledge of
Alice’s password to the server will authenticate
themselves as Alice to the server.

◮ This is the only step in this one-message protocol.
◮ But, there are questions:

◮ But how does the server verify her password?
◮ And how does her password get sent to the server?

Password security

◮ The server may keep a password file of user names
and plaintext passwords, and use lookup:

alice b1aZfa9s

Vulnerability: file stolen =⇒ all passwords break
◮ Improvement: use a one-way hash function h.
This is a cryptographic primitive that acts as a
“digital fingerprint”.

◮ The server stores hashes of passwords, not plain
texts. To verify Alice’s password, the server checks
h(P) against the stored hash h(P0). If the two
match, then (almost certainly), P = P0.

alice VUhUKC1OTUzKSVUoKE3Ky

◮ This is more secure than before: anyone who reads
the file does not immediately learn all passwords.

Better password security
◮ Password files containing hashes are still
vulnerable. For an 8 character ASCII password,
brute-force attack needs to check about 253 (1016)
combinations. Inconvenient but not infeasible.

◮ More convenient are dictionary attacks, a form of
intelligent search which reduces search space to
mere millions (220). Work by exploiting the
propensity of users to pick passwords related to
common words, personal details, etc. Nowadays,
password crackers are used during user registration
to prevent a variety bad choices.

◮ Dictionary attacks which precompute many hash
values can be thwarted by adding salt to
passwords. Salt is a random number that is
combined with the password before applying the
hash, and stored along with the result. Still doesn’t
stop a determined attack on a single password.

Safely communicating the password

◮ Another vulnerability: a plaintext password must
either be sent along a secure channel before it is
verified, or be unique on each run so learning it is
useless to an eavesdropper.

◮ One-time passwords provide uniqueness, e.g.:

1. The user could be assigned a sheet of paper with
100 one-time passwords: P1, P2, . . . , P100.

2. (Lamport, S/Key). The server initially stores h100(P).
At round i, the server will have hn−i+1(P), and Alice
submits hn−i(P). The server checks against the
stored value by computing h(hn−i(P)) and if correct,
stores hn−i(P).

3. (SecureID). User has a token device which computes
a new “password” every minute by computing a
hash of the current time (to a granularity of
minutes), and a secret key stored on the device.
Vendor shouldn’t keep secret keys. . .

Simple shared-key authentication

◮ With an unsecured channel, we may instead use
shared keys.

◮ Suppose that we have an in-car device C, which is a
congestion-charging transmitter in a car window
screen. C wishes to identify itself to a server S in an
overhead charging point, which clocks cars passing.
Suppose that C and S share a secret key Kcs. The
in-car device might send a message with its name
(a secret serial number) and an encrypted copy of
its name, perhaps with some additional relevant
data R (e.g., the time since it last passed a
charge-point).



Protocol for shared-key authentication
C→ S : C,{C,R}Kcs

(the notation {C,R}Kcs stands for the combination of C
and the rest R encrypted under the key Kcs).
◮ How does this work?

1. S uses plaintext name C to find the key it shares
with C, Kcs.

2. S attempts to decrypt the rest of the message using
Kcs. If successful, S concludes that C is the device it
is claiming to be.

◮ Why is C duplicated in the message?
◮ This prevents a reflection attack. If the protocol
works the other way around, it prevents the
message being re-used immediately by an
adversary, on C.

◮ Are there any other problems?
◮ It is vulnerable to replay attacks. A device which
captures and replays messages from windscreen
beamers, they could rack up huge charges on
another bill!

The need for nonces

◮ To prevent a replay attack, we need a method to
ensure that messages are fresh.

◮ We can do this using nonces (“number used
once”).

◮ A nonce is a random number or a sequence
number. The server S maintains a list of messages
it has seen (or if the nonce is a sequence number,
just the last value), and ignores those that have
gone before.

Remembering nonces

With a nonce N in the protocol, we now have:

C→ S : C,{C,N,R}Kcs

◮ This works, but has engineering drawbacks. The
server S must remember a reasonable history of
past messages, or the last value of the counter.

◮ But the counter may be distributed or may get
incremented several times during faulty
transmissions, etc. Can we remove the need to
remember nonces?

◮ A solution is to introduce a two-way
communication, based on challenge and
response.

Challenge and response

Now the nonce is generated randomly by the server,
and neither side needs to keep any (long-term) state:

Message 1. S→ C: N
Message 2. C→ S: C,{C,N,R}Kcs

◮ Many protocols are based on this basic
challenge-response idea, using nonces to
guarantee freshness.

◮ But challenge-response protocols are open to
another form of attack, the man-in-the-middle
attack (or to be politically correct, the
middleperson attack).

Man-in-the-middle attacks

◮ In the car congestion charging scenario, suppose
somebody builds a device which attaches to their
back windscreen and charges the car behind them
as they pass the barrier, simply by passing the
communications back and forth.

◮ To show this explicitly, let M be the middleperson:

Message 1. S→ M: N
Message 1’. M→ C: N
Message 2. C→ M: C,{C,N,R}Kcs
Message 2’. M→ S: C,{C,N,R}Kcs

◮ The charges are passed to the car behind!
◮ Notice that M here is particularly stupid, and needs
to understand nothing in the transmitted messages.

Foiling man-in-the-middle
◮ Man-in-the-middle attacks as passive and direct as
the simple case above can be difficult to foil: the
server on the overhead charging point may have no
way of telling that it is not talking directly to the car
that’s actually passing.

◮ One approach: timestamps instead of nonces, and
check that messages are sent within tight time
constraints. But in this case we would probably rely
on other techniques, e.g. secondary authentication
by number plate recognition, or at the least, good
recording mechanisms so that accountability is
maintained (somebody later questions their bill).

◮ Other middleperson attacks are more sophisticated,
e.g., typically the middle person taking an active
role in decrypting and re-encrypting messages.
Some of these other attacks do have defences in
protocols.



Timestamps
◮ Using timestamps in place of nonces provides
timeliness and uniqueness guarantees, preventing
replay. Additionally, they may provide time-limited
access privileges, or detect forced delays.

◮ General method: A generates a timestamp Ta from
her local clock, and binds it cryptographically in a
message sent to B. On receipt, B compares the
time against his own local clock, and accepts the
message if (1) the difference is within some
acceptance window, and optionally (2) no identical
timestamp has previously been received.

◮ Pros: reduced number of messages; no requirement
to maintain (possibly pairwise) state information.

◮ Cons: clocks are required to be (“loosely”)
synchronized; state required for storing observed
timestamps; synchronization itself may require
secure authenticated protocols. . .

Summary

We introduced and examined some simple protocols:
◮ Simple authentication using passwords, shared
keys

◮ Challenge response with shared keys
◮ Use of nonces and timestamps

In the next protocols lecture we will consider:
◮ Mutual authentication
◮ Challenge response with public keys
◮ Authentication and key establishment
◮ Digital certificates
◮ More fun with nonces

References

Interesting treatments of security protocols are given in
Chapter 2 of Anderson and Chapters 3–5 of Schneier.

Ross Anderson.
Security Engineering: A Comprehensive Guide to
Building Dependable Distributed Systems.
Wiley & Sons, 2001.

Bruce Schneier.
Applied Cryptography.
John Wiley & Sons, second edition, 1996.

Recommended Reading

Chapter 2 of Anderson.


