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Hash function basics

É A hash function is a computationally efficient
function h : {0,1}∗ → {0,1}k which compresses
any arbitrary length binary string to a fixed size
k-length binary hash value (or hash for short).

É A good hash function distributes values uniformly:
the probability that a randomly chosen string s gets
mapped to a particular hash y is 1

2k

É A cryptographic hash function must satisfy
some further properties, e.g.:

1. it should be difficult to invert;
2. it should be difficult to find a second input that

hashes to the same value as another input;
3. it should be difficult to find any two inputs that hash

to the same value.

Hash function uses and non-uses

É Integrity: Alice sends m,h(m) (or alternatively,
Ek(m||h(m))) to Bob.

É Protects against malicious modification.
É Confidentiality: An Authentication Server stores a

user’s password p as h(p).
É Other uses: confirming knowledge (e.g. password)

without revealing, deriving keys, pseudo-random
numbers. A piece of “cryptographic glue”.

É On their own, hash functions don’t protect against
É Malicious repetition of data, e.g., repeating a £100

bank deposit. (Ex. how could you do that?)
É Dishonest repudiation, e.g., denying sending a

hashed email message with a correct hash.
É Nor do they support message recovery, i.e.,

recovering the original message after tampering

Properties of cryptographic hash functions

Preimage Resistance (One-way)

h is preimage resistant if given a hash value y, it is
computationally infeasible to find an x such that
h(x) = y.

2nd Preimage Resistance (Weak Collision Resistance)

h is 2nd preimage resistant if given a value x1 and
its hash h(x1), it is computationally infeasible to find
another x2 such that h(x2) = h(x1).

(Strong) Collision Resistance

h is collision resistant if it is computationally
infeasible to find any two inputs x1 and x2 such that
h(x1) = h(x2).

Hash function Classification [HAC] Modification Detection Codes
É The main application of hash functions is as

Modification Detection Codes to provide data
integrity.

É A hash h(x) provides a short message digest, a
“fingerprint” of some possibly large data x. If the
data is altered, the digest should become invalid.
É This allows the data (but not the hash!) to be stored

in an unsecured place.
É If x is altered to x′, we hope h(x) 6= h(x′), so it can be

detected.
É This is useful especially where malicious alteration

is a concern, e.g., software distribution.
É Ordinary hash functions such as CRC-checkers

produce checksums which are not 2nd preimage
resistant: an attacker could produce a hacked
version of a software product and ensure the
checksum remained the same.



Varieties of MDCs

É A one-way hash function (OWHF) is a hash
function that satisfies preimage resistance and
2nd-preimage resistance.

É A collision resistant hash function (CRHF) is a
hash function that satisfies 2nd-preimage
resistance and collision resistance.

É In practice, CRHF usually satisfies preimage
resistance.

É CRHFs are harder to construct than OWHFs and
have longer length hash values.

É Choice between OWHF and CRHF depends on
application:
É If attacker can control input, CRHF required.
É Otherwise OWHF suffices

É Ex: which is needed for password file security?

Message Authentication Codes

É Message Authentication Codes are keyed hash
functions, indexed with a secret key.
É As well as data integrity, they provide data-origin

authentication, because it is assumed that apart
from the recipient, only the sender knows the secret
key necessary to compute the MAC.

É A MAC is a key-indexed family of hash functions,
{hk | k ∈ K}. MACs must satisfy a computation
resistance property.

Computation Resistance

Given a set of pairs (xi,hk(xi)) it is computationally
infeasible to find any other text-MAC pair (x,hk(x)) for a
new input x 6= xi.

Relationships between properties
É Collision resistance implies 2nd-preimage

resistance.
É Sketch proof [HAC]:

É Let h be CR, but suppose it is not 2nd PI.
É Fix some input x; compute h(x).
É Since not 2nd PI, we can find an x′ 6= x with

h(x′) = h(x).
É But now (x,x′) is a collision, so h cannot be CR.

É This and similar arguments (e.g., see Smart) can be
made precise using the Random Oracle Model.

É Collision resistance does not imply preimage
resistance

É Contrived counterexample:

h(x) =
�

1 || x if x has length n
0 || g(x) otherwise

Collision Resistance and Birthday Attacks
É To satisfy (strong) collision resistance, a hash

function must be large enough to withstand a
birthday attack. (or square root attack).

É Drawing random elements with replacement from a
set of k elements, a repeat is likely after about

p
k

selections.
É Mallory has two contracts, one for £1000, the other

£100,000, to be signed with a 64-bit hash. He
makes 232 minor variations in each (e.g
spaces/control chars), and finds a pair with the
same hash. Later claims second document was
signed, not first.

É An n-bit unkeyed hash function has ideal security
if producing a preimage or 2nd-preimage each
requires 2n operations, and producing a collision
requires 2n/2 operations.

From one-way functions to MDCs

É Multiplication of large primes is a OWF
É for appropriate choices of p and q, f (p,q) = pq is a

one-way function since integer factorization
[FACTORING] is difficult.

É Not feasible to turn into an MD function, though.
(Ex: why?)

É Exponentiation in finite fields is a OWF
É for appropriate primes p and numbers α,

f (x) = αx mod p is a one-way function, since the
discrete logarithm problem [DLP] is difficult.

É Main problem with turning this into a realistic MD
function is that it’s too slow to calculate.

OWFs from block ciphers

É A block cipher is an encryption scheme which works
on fixed length blocks of input text.

É We can construct a OWF from a block cipher such
as DES, which is treated essentially as a random
function:

h(x) = Ek(x)⊕ x

for fixed key k. This can be turned into a MD
function, by iteration. . .



Iterated hash function construction [HAC] Building up hash functions
É An iterated hash function is constructed using a

compression function f which converts a t + n-bit
input into an n-bit output.
É The input x is split into blocks x1 x2, . . .xk of size t,

appending padding bits and a length block
indicating the original length.

H0 = IV Hi = f (Hi−1,xi), 1 ≤ i ≤ k h(x) = g(Hk).

É IV: an initialization vector; g: an output
transformation (often identity).

É This is Merkle’s meta-method
É Fact: any CR compression function f can be

extended to a CRHF by the above construction, and
É padding: the last block with 0s, adding a final extra

block xk which holds right-justified binary
representation of length(x) (this padding is called
MD strengthening).

É Set IV = 0n, g = id, and compute Hi = f (Hi−1,xi).

MD5
É Improvement of MD4; MD4 and MD5 designed by

Ron Rivest.
É Text processed in 512-bit blocks, as 16 32-bit

sub-blocks. Output is four 32-bit blocks, giving a
128-bit hash. Message padded with 1 and then 0s
until last block is 448 bits long, then a 64-bit length.

É Main loop has four rounds, chaining 4 variables
a,b,c,d. Each round uses a different operation (with
a similar structure) 16 times, which computes a new
value of one of the four variables using a non-linear
function of the other three, chosen to preserve
randomness properties of the input.

É For example, the first round uses the operation:

a = (F(b,c,d) + xi + tj) <<< s
F(b,c,d) = (b∧ c)∨ (¬b∧ d)

where <<< s is left-circular shift of s bits, xi is the
ith sub-block of the message. Constants tj are the
integer part of 232 ∗ abs(sin(i+ 1)) where 0 ≤ i ≤ 63
is in radians (for the 4 * 16 steps).

Secure Hash Algorithm SHA-1 (160)
SHA-1 is a NIST standard [FIPS 180] also based on MD4.
An attack strategy with cost 251 was found in 2011.
É Five 32-bit blocks are chained; output is 160 bits.

Message blocks 512 bits. Padding like MD5.
É Main loop has four rounds of 20 operations, chaining

5 variables a,b,c,d,e, f . Five IVs and four constants
are used:

A = 0x67452301
B = 0xEFCDAB89
C = 0x98BADCFE
D = 0x10325476
E = 0xC3D2E1F0

K0 = 0x5A827999
K1 = 0x6ED9EBA1
K2 = 0x8F1BBCDC
K3 = 0xCA62C1D6

É The message block undergoes an expansion
transformation from 16*32-bit words xi to 80*32-bit
words, wi by:
wi = xi, for 0 ≤ i ≤ 15.
wi = (wi−3 ⊕wi−8⊕

wi−14 ⊕wi−16) <<< 1, for 16 ≤ i ≤ 79.

SHA-1 (160) continued
É 80 steps in main loop, changing Ks and Fs 4 times

É Where j = i/20:

for( i = 0; i < 80; i++ ) {
tmp = (a <<< 5) + Fj(b,c,d) + e+wi +Kj;
e = d;
c = b <<< 30;
b = a;
a = tmp;

}

É Each Fj combines three of the five variables:

F0(X,Y,Z) = (X∧ Y)∨ (¬X∧ Z)
F1(X,Y,Z) = X⊕ Y ⊕ Z
F2(X,Y,Z) = (X∧ Y)∨ (X∧ Z)∨ (Y ∧ Z)
F3(X,Y,Z) = X⊕ Y ⊕ Z

É Finally a,b,c,d,e are added to tmp (all addition is
modulo 232).

É Exercise: implement SHA-1 in your favourite
language following this. Test against sha1sum.

Current Status
É Hash functions are versatile and powerful primitive.
É However, difficult to construct and less researched

than encryption schemes.
É ideal hash function is a “random mapping” where

knowledge of previous results doesn’t give
knowledge of another.

É practical fast iterative hash constructions fail this!
É MD4 (1998), MD5 (1993/2005), SHA-1 (2005) are

now all considered broken.
É The US National Institute of Standards and

Technology (NIST) has standardised a set of newer
hash functions.
É Formerly called SHA-2, they are denoted by their

output size: SHA-256, SHA-384, SHA-512.
É However, since they are based upon the same SHA

construction, they are not long-term solutions
É In 2012, NIST awarded a new standard SHA-3 to the

Keccak algorithm (a sponge function which has
arbitrary output length).
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Recommended Reading

One of: Ch 9 of HAC (9.1–9.2); Ch. 10 of Smart 3rd Ed;
11.1–11.3 of Gollmann.


