
Cryptography II:
Hash Functions

Computer Security Lecture 3

David Aspinall

School of Informatics
University of Edinburgh

21st January 2013

Hash function basics

É A hash function is a computationally efficient
function h : {0,1}∗ → {0,1}k which compresses
any arbitrary length binary string to a fixed size
k-length binary hash value (or hash for short).

É A good hash function distributes values uniformly:
the probability that a randomly chosen string s gets
mapped to a particular hash y is 1

2k

É A cryptographic hash function must satisfy
some further properties, e.g.:

1. it should be difficult to invert;
2. it should be difficult to find a second input that

hashes to the same value as another input;
3. it should be difficult to find any two inputs that hash

to the same value.

Hash function uses and non-uses

É Integrity: Alice sends m,h(m) (or alternatively,
Ek(m||h(m))) to Bob.

É Protects against malicious modification.
É Confidentiality: An Authentication Server stores a

user’s password p as h(p).
É Other uses: confirming knowledge (e.g. password)

without revealing, deriving keys, pseudo-random
numbers. A piece of “cryptographic glue”.

É On their own, hash functions don’t protect against
É Malicious repetition of data, e.g., repeating a £100

bank deposit. (Ex. how could you do that?)
É Dishonest repudiation, e.g., denying sending a

hashed email message with a correct hash.
É Nor do they support message recovery, i.e.,

recovering the original message after tampering

Properties of cryptographic hash functions

Preimage Resistance (One-way)

h is preimage resistant if given a hash value y, it is
computationally infeasible to find an x such that
h(x) = y.

2nd Preimage Resistance (Weak Collision Resistance)

h is 2nd preimage resistant if given a value x1 and
its hash h(x1), it is computationally infeasible to find
another x2 such that h(x2) = h(x1).

(Strong) Collision Resistance

h is collision resistant if it is computationally
infeasible to find any two inputs x1 and x2 such that
h(x1) = h(x2).

Hash function Classification [HAC] Modification Detection Codes
É The main application of hash functions is as

Modification Detection Codes to provide data
integrity.

É A hash h(x) provides a short message digest, a
“fingerprint” of some possibly large data x. If the
data is altered, the digest should become invalid.
É This allows the data (but not the hash!) to be stored

in an unsecured place.
É If x is altered to x′, we hope h(x) 6= h(x′), so it can be

detected.
É This is useful especially where malicious alteration

is a concern, e.g., software distribution.
É Ordinary hash functions such as CRC-checkers

produce checksums which are not 2nd preimage
resistant: an attacker could produce a hacked
version of a software product and ensure the
checksum remained the same.

Varieties of MDCs

É A one-way hash function (OWHF) is a hash
function that satisfies preimage resistance and
2nd-preimage resistance.

É A collision resistant hash function (CRHF) is a
hash function that satisfies 2nd-preimage
resistance and collision resistance.

É In practice, CRHF usually satisfies preimage
resistance.

É CRHFs are harder to construct than OWHFs and
have longer length hash values.

É Choice between OWHF and CRHF depends on
application:
É If attacker can control input, CRHF required.
É Otherwise OWHF suffices

É Ex: which is needed for password file security?

Message Authentication Codes

É Message Authentication Codes are keyed hash
functions, indexed with a secret key.
É As well as data integrity, they provide data-origin

authentication, because it is assumed that apart
from the recipient, only the sender knows the secret
key necessary to compute the MAC.

É A MAC is a key-indexed family of hash functions,
{hk | k ∈ K}. MACs must satisfy a computation
resistance property.

Computation Resistance

Given a set of pairs (xi,hk(xi)) it is computationally
infeasible to find any other text-MAC pair (x,hk(x)) for a
new input x 6= xi.

Relationships between properties
É Collision resistance implies 2nd-preimage

resistance.
É Sketch proof [HAC]:

É Let h be CR, but suppose it is not 2nd PI.
É Fix some input x; compute h(x).
É Since not 2nd PI, we can find an x′ 6= x with

h(x′) = h(x).
É But now (x,x′) is a collision, so h cannot be CR.

É This and similar arguments (e.g., see Smart) can be
made precise using the Random Oracle Model.

É Collision resistance does not imply preimage
resistance

É Contrived counterexample:

h(x) =
�

1 || x if x has length n
0 || g(x) otherwise

Collision Resistance and Birthday Attacks
É To satisfy (strong) collision resistance, a hash

function must be large enough to withstand a
birthday attack. (or square root attack).

É Drawing random elements with replacement from a
set of k elements, a repeat is likely after about

p
k

selections.
É Mallory has two contracts, one for £1000, the other

£100,000, to be signed with a 64-bit hash. He
makes 232 minor variations in each (e.g
spaces/control chars), and finds a pair with the
same hash. Later claims second document was
signed, not first.

É An n-bit unkeyed hash function has ideal security
if producing a preimage or 2nd-preimage each
requires 2n operations, and producing a collision
requires 2n/2 operations.

From one-way functions to MDCs

É Multiplication of large primes is a OWF
É for appropriate choices of p and q, f (p,q) = pq is a

one-way function since integer factorization
[FACTORING] is difficult.

É Not feasible to turn into an MD function, though.
(Ex: why?)

É Exponentiation in finite fields is a OWF
É for appropriate primes p and numbers α,

f (x) = αx mod p is a one-way function, since the
discrete logarithm problem [DLP] is difficult.

É Main problem with turning this into a realistic MD
function is that it’s too slow to calculate.

OWFs from block ciphers

É A block cipher is an encryption scheme which works
on fixed length blocks of input text.

É We can construct a OWF from a block cipher such
as DES, which is treated essentially as a random
function:

h(x) = Ek(x)⊕ x

for fixed key k. This can be turned into a MD
function, by iteration. . .

Iterated hash function construction [HAC] Building up hash functions
É An iterated hash function is constructed using a

compression function f which converts a t + n-bit
input into an n-bit output.
É The input x is split into blocks x1 x2, . . .xk of size t,

appending padding bits and a length block
indicating the original length.

H0 = IV Hi = f (Hi−1,xi), 1 ≤ i ≤ k h(x) = g(Hk).

É IV: an initialization vector; g: an output
transformation (often identity).

É This is Merkle’s meta-method
É Fact: any CR compression function f can be

extended to a CRHF by the above construction, and
É padding: the last block with 0s, adding a final extra

block xk which holds right-justified binary
representation of length(x) (this padding is called
MD strengthening).

É Set IV = 0n, g = id, and compute Hi = f (Hi−1,xi).

MD5
É Improvement of MD4; MD4 and MD5 designed by

Ron Rivest.
É Text processed in 512-bit blocks, as 16 32-bit

sub-blocks. Output is four 32-bit blocks, giving a
128-bit hash. Message padded with 1 and then 0s
until last block is 448 bits long, then a 64-bit length.

É Main loop has four rounds, chaining 4 variables
a,b,c,d. Each round uses a different operation (with
a similar structure) 16 times, which computes a new
value of one of the four variables using a non-linear
function of the other three, chosen to preserve
randomness properties of the input.

É For example, the first round uses the operation:

a = (F(b,c,d) + xi + tj) <<< s
F(b,c,d) = (b∧ c)∨ (¬b∧ d)

where <<< s is left-circular shift of s bits, xi is the
ith sub-block of the message. Constants tj are the
integer part of 232 ∗ abs(sin(i+ 1)) where 0 ≤ i ≤ 63
is in radians (for the 4 * 16 steps).

Secure Hash Algorithm SHA-1 (160)
SHA-1 is a NIST standard [FIPS 180] also based on MD4.
An attack strategy with cost 251 was found in 2011.
É Five 32-bit blocks are chained; output is 160 bits.

Message blocks 512 bits. Padding like MD5.
É Main loop has four rounds of 20 operations, chaining

5 variables a,b,c,d,e, f . Five IVs and four constants
are used:

A = 0x67452301
B = 0xEFCDAB89
C = 0x98BADCFE
D = 0x10325476
E = 0xC3D2E1F0

K0 = 0x5A827999
K1 = 0x6ED9EBA1
K2 = 0x8F1BBCDC
K3 = 0xCA62C1D6

É The message block undergoes an expansion
transformation from 16*32-bit words xi to 80*32-bit
words, wi by:
wi = xi, for 0 ≤ i ≤ 15.
wi = (wi−3 ⊕wi−8⊕

wi−14 ⊕wi−16) <<< 1, for 16 ≤ i ≤ 79.

SHA-1 (160) continued
É 80 steps in main loop, changing Ks and Fs 4 times

É Where j = i/20:

for(i = 0; i < 80; i++) {
tmp = (a <<< 5) + Fj(b,c,d) + e+wi +Kj;
e = d;
c = b <<< 30;
b = a;
a = tmp;

}

É Each Fj combines three of the five variables:

F0(X,Y,Z) = (X∧ Y)∨ (¬X∧ Z)
F1(X,Y,Z) = X⊕ Y ⊕ Z
F2(X,Y,Z) = (X∧ Y)∨ (X∧ Z)∨ (Y ∧ Z)
F3(X,Y,Z) = X⊕ Y ⊕ Z

É Finally a,b,c,d,e are added to tmp (all addition is
modulo 232).

É Exercise: implement SHA-1 in your favourite
language following this. Test against sha1sum.

Current Status
É Hash functions are versatile and powerful primitive.
É However, difficult to construct and less researched

than encryption schemes.
É ideal hash function is a “random mapping” where

knowledge of previous results doesn’t give
knowledge of another.

É practical fast iterative hash constructions fail this!
É MD4 (1998), MD5 (1993/2005), SHA-1 (2005) are

now all considered broken.
É The US National Institute of Standards and

Technology (NIST) has standardised a set of newer
hash functions.
É Formerly called SHA-2, they are denoted by their

output size: SHA-256, SHA-384, SHA-512.
É However, since they are based upon the same SHA

construction, they are not long-term solutions
É In 2012, NIST awarded a new standard SHA-3 to the

Keccak algorithm (a sponge function which has
arbitrary output length).

References
A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone, eds.
Handbook of Applied Cryptography.
CRC Press, 1997. Online:
http://www.cacr.math.uwaterloo.ca/hac.

Neils Ferguson and Bruce Schneier. Practical
Cryptography.
John Wiley & Sons, 2003.

Douglas R Stinson. Cryptography Theory and Practice.
CRC Press, second edition edition, 2002.

Nigel Smart. Cryptography: An Introduction.
McGraw-Hill, 2003. Third edition online:
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/

Recommended Reading

One of: Ch 9 of HAC (9.1–9.2); Ch. 10 of Smart 3rd Ed;
11.1–11.3 of Gollmann.

