Cryptography IV:
Asymmetric Ciphers
Computer Security Lecture 5

Outline

Background
RSA

Diffie-Hellman
ElGamal
Summary

History of Public-Key Cryptography

- Idea attributed to Diffie and Hellman in 1975, but later revealed in British classified work of James Ellis in 1971 at GCHQ.
- Basic idea: alter traditional symmetry of cryptographic protocols to convey additional info in a public key. The sender uses the public key to convey a secret message to the recipient, without requiring a secure channel to share key information.
- Originally presented as a means of encrypting messages. In practice, public key algorithms are used to exchange symmetric keys
- Public keys are key encrypting keys
- Symmetric keys are data encrypting keys
- Public keys are also used to provide integrity through digital signatures (later lecture)

Prime numbers

- A natural number $p \geq 2$ is prime if 1 and p are its only positive divisors.
- For $x \geq 17$, then $\pi(x)$, the number of primes less than or equal to x, is approximated by:

Fundamental theorem of arithmetic
Every natural number $n \geq 2$ has a unique factorization as a product of prime powers: $p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}$ for distinct primes p_{i} and positive e_{i}.

Relative primes

- Two integers a and b are relatively prime if $\operatorname{gcd}(a, b)=1$, i.e., a and b have no common factors.
- The Euler totient function $\phi(n)$ is the number of elements of $\{1, \ldots, n-1\}$ relatively prime to n.
- Given the factorisation of n, it's easy to compute $\phi(n)$.
- For prime $n, \phi(n)=n-1$

For distinct primes $p, q, \phi(p q)=(p-1)(q-1)$.

- An integer n is said to be B-smooth wrt a positive bound B, if all its prime factors are $\leq B$
- We say just " n is smooth" when $B \ll n$.
- Smooth numbers are easy to factor, leading to efficient factoring algorithms for large composites containing primes p with for which $p-1$ is smooth (Pollard's $P-1$ method)

Integers modulo n : \mathbf{Z}_{n} and \mathbf{Z}^{*}

- Let n be a positive integer. The set

$$
\mathbf{Z}_{n}=\{0, \ldots, n-1\}
$$

contains (equivalence classes of) integers mod n.

- Let $a \in \mathbf{Z}_{n}$. The multiplicative inverse of a modulo n is the unique $x \in \mathbf{Z}_{n}$ such that

$$
a x \equiv 1 \quad(\bmod n)
$$

Such an x exists iff $\operatorname{gcd}(a, n)=1$.

- We can define a multiplicative group \mathbf{Z}_{n}^{*} by

$$
\mathbf{Z}_{n}^{*}=\left\{a \in \mathbf{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}
$$

- Facts:
- \mathbf{Z}_{n}^{*} is closed under multiplication
- $\left|\mathbf{Z}_{n}^{*}\right|=\phi(n)$
- For prime $n, \mathbf{Z}_{n}^{*}=\{1, \ldots, n-1\}$.

Properties of integers in \mathbf{Z}_{n}^{*}

Fermat's little theorem

If p is prime and $\operatorname{gcd}(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$.

er's theorem

If $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)} \equiv 1(\bmod n)$.

- Fermat's little theorem is used in several places, e.g. a simple probabilistic primality test:
- repeatedly test $a^{p-1} \bmod p$ for random a
- Miller-Rabin improves this (Carmichael numbers fail)
- Euler's theorem allows reduction of large powers.
- $5^{79} \bmod 6=\left(5^{2} * 5^{2}\right)^{19} * 5^{3}=1^{19} * 125 \bmod 6=5$
- Generally: if $x \equiv y(\bmod \phi(n))$, then $a^{x} \equiv a^{y}(\bmod n)$

Cyclic groups

Let $a \in \mathbf{Z}_{n}^{*}$.
The order of a is the least $t>0$ st $a^{t} \equiv 1(\bmod n)$.

- If $g \geq 2$ has order $\phi(n)$, then \mathbf{Z}^{*} is cyclic and g is a generator (aka primitive root) of \mathbf{Z}_{n}^{*}
- \mathbf{Z}_{n}^{*} is cyclic iff $n=2,4, p^{k}, 2 p^{k}$ for odd primes p.
- The discrete logarithm of b wrt g is the x st $g^{x} \equiv b(\bmod n)$.
- There is an efficient algorithm for computing discrete logs in \mathbf{Z}_{p}^{*} if $p-1$ has smooth factors

Example: \mathbf{Z}_{5}^{*}

- Here is the multiplication table for \mathbf{Z}_{5}^{*}, showing $x y$ $(\bmod 5)$

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

- $\left|\mathbf{Z}_{5}^{*}\right|=\phi(5)=4$
- Inverses: $2^{-1}=3,3^{-1}=2,4^{-1}=4$
- Notice $2^{4}=2 * 2 * 2 * 2=1$, also $3^{4}=4^{4}=1$.
- Generators are: 2, 3, 4
- $\ln \mathbf{Z}_{5}^{*}$, the discrete \log of 4 for base 3 is 2

RSA remarks

- Recall that RSA is an example of a reversible public-key encryption scheme. This is because e and d are symmetric in the definition. RSA digital signatures make use of this
- RSA is often used with randomization (e.g., salting with random appendix) to prevent chosen-plaintext and other attacks.
- It's the most popular and cryptanalysed public-key algorithm. Largest modulus factored in the (now defunct) RSA challenge is 768 bits (232 digits), factored using the Number Field Sieve (NFS) on 12 December 2009
- It took the equivalent of 2000 years of computing on a single core 2.2 GHz AMD Opteron. On the order of 267 instructions were carried out
- Factoring a 1024 bit modulus would take about 1000 times more work (soon achievable)

RSA usage and key size

- In practice, RSA is used to encrypt symmetric keys not messages
- Like most public key algorithms, the RSA key size is larger, and the computations are more expensive than symmetric schemes such as AES
- This is believed to be a necessary result of the key being publicly available.
- Consider the complexity of brute force attacks for an n-bit key:
- A worst-case attack algorithm on a symmetric
cipher would take $O\left(2^{n}\right)$ effort (exponential).
- A worst-case attack algorithm for RSA is dependent take $O\left(e^{o(n)}\right)$ (sub-exponential)
- (unless you have a quantum computer)

Cryptographic Reference Problems

FACTORING Integer factorization. Given positive n, find its prime factorization, i.e., distinct p_{i} such that $n=p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}$ for some $e_{i} \geq 1$.
SQRROOT Given a such that $a \equiv x^{2}(\bmod n)$, find x.
RSAP RSA inversion. Given n such that $n=p q$ for some odd primes $p \neq q$, and e such that $\operatorname{gcd}(e,(p-1),(q-1))=1$, and c, find m such that $m^{e} \equiv c(\bmod n)$

Note: SQRROOT $=p$ FACTORING and RSAP \leq_{p} FACTORING

- $A \leq_{p} B$ means there is a polynomial time (efficient) reduction from problem A to problem B.
$A=B$ means $A<p B$ and $B<p A$
So: RSAP is no harder than FACTORING.
Is it easier? An open question.

Cryptographic Reference Problems I

DLP Discrete logarithm problem. Given prime p, a generator g of \mathbf{Z}_{p}^{*}, and an element $a \in \mathbf{Z}_{p}^{*}$, find the integer x, with $0 \leq x \leq p-2$ such that $g^{x} \equiv a$ $(\bmod p)$.
DHP Diffie-Hellman problem. Given prime p, a generator g of \mathbf{Z}_{p}^{*}, and elements $g^{a} \bmod p$ and $g^{b} \bmod p$, find $g^{a b} \bmod p$.

Note: DHP \leq_{p} DLP.
In some cases, $\mathrm{DHP}={ }^{2} \mathrm{DLP}$.

Diffie-Hellman key agreement

- Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of \mathbf{Z}_{p}^{*}.

$$
\begin{array}{lll}
\text { Message 1. } & A \rightarrow B: & g^{x} \bmod p \\
\text { Message 2. } & B \rightarrow A: & g^{y} \bmod p
\end{array}
$$

- A chooses random $x, 1 \leq x<p-1$, sends msg 1 .
- B chooses random $y, 1 \leq y<p-1$, sends msg 2 .
- B receives g^{x}, computes shared key $K=\left(g^{x}{ }^{y} \bmod p\right.$
- A receives g^{y}, computes shared key $K=\left(g^{y}\right)^{x} \bmod p$. Protocol is safe against passive adversaries, but not active ones.
Exercise: try some artificial examples with $p=11$, $g=2$. Show a MITM attack against the protocol.

ElGamal encryption

- A key-pair is based on a large random prime p and generator g of \mathbf{Z}_{p}^{*}, and a random integer d. Public key: $\left(p, g, g^{d} \bmod p\right)$, private key: d
- The message space $\mathcal{M}=\{0, \ldots, p-1\}$, and the encryption operation is given by selecting a random integer r and computing a pair:

$$
E_{\left(p, g, g^{d}\right)}(m)=(e, c) \quad \text { where } \quad e=g^{r} \bmod p
$$

$$
c=m\left(g^{d}\right)^{r} \bmod p
$$

- Decryption takes an element of ciphertext
$\mathcal{C}=\mathcal{M} \times \mathcal{M}$, and computes:
$D_{d}(e, c)=e^{-d} c \bmod p \quad$ where $e^{-d}=e^{p-1-d} \bmod p$
- Decryption works because $e^{-d}=g^{-d r}$, so
$D_{d}(e, c) \equiv g^{-d r} m g^{d r} \equiv m \quad(\bmod p)$.
- This is like using Diffie-Hellman to agree a key $g^{d r}$ and encrypting m by multiplication.

ElGamal remarks

- ElGamal is an example of a randomized encryption scheme, so no need to add salt. Security relies in intractability of DHP. Choosing different r for different messages is critical. Exercise: why?
- Efficiency:
- ciphertext twice as long as plaintext
- encryption requires two modular exponentiations, which can be sped up by picking the random r with some additional structure (with care)
- The prime p and generator g can be fixed for the system, reducing the size of public keys. Then exponentiation can be speeded up by precomputation; however, so can the best-known algorithm for calculating discrete logarithms, so a larger modulus would be warranted.
- The security of ElGamal encryption and signing is based on the intractability of the DHP for p. Severa other conditions are required.

Summary: Current Public Key algorithms

- RSA, EIGamal already described.
- Elliptic curve schemes. Use ElGamal techniques. Have shorter keys for same amount of security.
- Rabin encryption. Based on SQRROOT problem.
- Probabilistic schemes, which achieve provable security based on Random Oracle Method (ROM) arguments.
- Cramer-Shoup. Extends EIGamal with use of hash functions in critical places to provide provable security without ROM. Less efficient than ElGamal: slower and ciphertext twice as long.

References

Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone, editors. Handbook of Applied Cryptography
CRC Press Series on Discrete Mathematics and Its Applications. CRC Press, 1997.
Online version at
http://www. cacr.math. uwaterloo.ca/hac.
Q Nigel Smart. Cryptography: An Introduction McGraw-Hill, 2003. Third edition online: http //www.cs.bris.ac.uk/~nigel/Crypto_Book/

Recommended Reading

Chapter 11, 12, 13 of Smart (3rd Ed).

