Aims

- **Digital signatures** allow a principal to cryptographically bind (a representation of) its identity to a piece of information.
- Signatures can help establish security properties such as:
 - authentication
 - accountability/non-repudiation
 - unforgeability
 - integrity
 - verifiability by independent, public or 3rd party
- Digital signatures are the asymmetric analogue of MACs, with a crucial difference. MACs can’t distinguish which of A or B provided integrity to a message (so no non-repudiation or independent verifiability).
- NB: **electronic signature** is a more general notion.

Signature mechanism

A signature mechanism for principal A is given by:

- A message space \(M \) of messages for signing
- A set \(S \) of signatures (e.g. strings \(\{0, 1\}^n \))
- A secret **signing function** \(S_A : M \to S \)
- A public **verification function** \(V_A : M \times S \to \text{Bool} \)

satisfying the correctness and security properties:

1. \(V_A(m, s) = \text{true} \) if and only if \(S_A(m) = s \).
2. For any principal other than \(A \), it is computationally infeasible to find for any \(m \in M \), an \(s \in S \) such that \(V_A(m, s) = \text{true} \).

Usually use a public algorithm yielding key-indexed families \(\{S_s : s \in K\} \) of signing and verification functions \(\{V_v : v \in K\} \). Principal advertises \(v \).

Remark: nobody has proved a signature mechanism satisfying 2 exists, although there are good candidates.

Using a signature scheme

- To sign a message the **signer** \(A \)
 1. Computes \(s = S_A(m) \).
 2. Sends the pair \((m, s) \).
- To verify that a signature \(s \) on a message \(m \) was created by \(A \), another principal, the **verifier**:
 1. Obtains the verification function \(V_A \) for \(A \).
 2. Computes \(u = V_A(m, s) \).
 3. **Accepts** the signature if \(u = \text{true} \), **Rejects** it if \(u = \text{false} \).
Digital signatures with a TTP
- Given a trusted third party, it is possible to use symmetric cryptography techniques.
- Let secure Sam S be the TTP, who shares a key with each principal.
- For A to send a signed contract M to B, S acts as an intermediary.
 - Message 1. A → S: \(\{ M \}_{K_{as}} \)
 - Message 2. S → B: \(\{ M \}_{K_{bs}} \)
 (like Wide Mouthed Frog key exchange protocol, M should include time-stamps and names).
- If A and B disagree about a signature, a judge Judy can verify the contracts also using S:
 - Message 1. J → S: \(\{ M \}_{K_{as}}, \{ M \}_{K_{bs}} \)
 - Message 2. S → J: \(\{ \text{yes or no} \}_{K_{js}} \)

Digital signatures from PK encryption
- Suppose we have a public-key encryption scheme with \(M = C \), and \((d,e)\) a key-pair. Then because \(E_d \) and \(D_e \) are both permutations on \(M \), we have that:
 \[
 D_e(E_d(m)) = E_d(D_e(m)) = m \quad \text{for all } m \in M
 \]
 A public-key scheme of this type is called reversible.
- RSA is reversible, but not every PK scheme is.
- We can define a digital signature scheme by reversing encryption and decryption:
 - Message space \(M \), signature space \(C \) (\(= M \)).
 - the signing function \(S_A = D_d \)
 - the verification function \(V_A \) is defined by
 \[
 V_A(m,s) = \begin{cases}
 \text{true} & \text{if } E_d(s) = m, \\
 \text{false} & \text{otherwise}.
 \end{cases}
 \]

Attacks on signature schemes [HAC]
- An adversary wants to forge signatures. Cases:
 1. Total break. Adversary can compute the private key or find an equivalent signing function.
 2. Selective forgery. Adversary can create a valid signature for some chosen message, without using the signer.
 3. Existential forgery. Adversary can create a valid signature for at least one message, without explicit choice of the message. May involve signer.
- The adversary may have different knowledge levels. For PK schemes:
 1. Key-only attack: adversary only knows PK.
 2. Known-message attack: adversary has signatures for some known (not chosen) messages.
 3. Chosen-message attack: adversary can obtain signatures for messages of his choosing. Messages may be determined in advance or in adaptive way, using signer as oracle.

Existential forgery
- The previous scheme is too simple because signatures are forgable: a principal B can generate a random \(s \in C \) as a signature, apply the public encryption function to get a message \(m = E_d(s) \), and transmit \((m,s)\).
- Obviously this verifies! It is an example of existential forgery.
- The message \(m \) is not likely to be of B’s choosing (and probably garbage).
- But this ability violates property 2 given earlier.

Signatures with redundancy
- A fix to reduce likelihood of existential forgery is to take \(M' \subset M \) to be messages with a special redundant structure, which is publicly known e.g., messages padded to an even length, surrounded with a fixed bit pattern.
- This format is easily recognized by the verifier:
 \[
 V_A(s) = \begin{cases}
 \text{true} & \text{if } E_d(s) \in M', \\
 \text{false} & \text{otherwise}.
 \end{cases}
 \]
- Now A only transmits the signature \(s \), since the message \(m = E_d(s) \) can be recovered by the verification function.
- This property is message recovery. The scheme is called a signature scheme with recovery.
- Existential forgery is now less likely.

Signatures and hash functions
- In practice, usually the signing function is constructed by first making a hash of the input document, and signing that. Reasons:
 1. efficiency: signature is on smaller text
 2. avoid attacks on cipher system
- Signer: computes and transmits \((m,s)\) where \(s = S_A(h(m)) \).
- Verifier: computes \(h(m) \) and verifies \(V_A(h(m),s) \).
- The hash function must satisfy appropriate properties (see Hash Functions lecture).
- This is called a signature scheme with appendix.
RSA Signatures

- Setup: \(n = pq \) computed as product of two primes. \(ed \equiv 1 \mod \phi(n) \). \((e, n)\) is the public key.
- To sign a message \(m \), compute the signature \(s = h(m)^d \mod n \). Only the owner of the private key \(d \) is able to compute the signature.
- To verify the signature, upon receipt of \((m, s)\), compute \(se \mod n \) and verify whether it equals \(h(m) \).

Distributed RSA Signatures

- Signatures can optionally be distributed so that each of \(t \) users contributes to the signature. A trusted party \(T \) computes \(t \) shares such that

\[
d = \sum_{i=1}^{t} d_i \mod \phi(n)
\]

and securely distributes \(d_i \) to each user \(i \).
- To compute a signature on a message \(m \), each user \(i \) computes \(o_i = h(m)^{d_i} \mod n \).
- A signer can compute the resultant signature as

\[
s = \prod_{i=1}^{t} o_i \mod n
\]

- Secret sharing can also be used so that \(l < t \) users could be used to construct a signature.

ElGamal Signatures

- Setup as encryption: \(p \) an appropriate prime, \(g \) a generator of \(\mathbb{Z}_p^\ast \), and the private signing key, \(d \) a random integer with \(1 \leq d \leq p - 2 \).
- The public verification key is \((p, g, g^d \mod p)\).
- To sign a message \(m \), \(0 \leq m \leq p \), the signer picks a random secret number \(r \) with \(1 \leq r \leq p - 2 \) and \(\gcd(r, p - 1) = 1 \), and computes:

\[
\mathbf{S}_d(m) = (e, s) \quad \text{where} \quad e = g^m \mod p \quad \text{and} \quad s = r^{-1} (m - dr) \mod (p - 1).
\]

- The verification function checks that \(1 \leq e \leq p - 1 \), and an equation:

\[
V_{(p, g, d^e)}(m, (e, s)) = \begin{cases}
\text{true} & \text{if } (g^e)^s \equiv g^m \mod p, \\
\text{false} & \text{otherwise}.
\end{cases}
\]

- Verification works because for a correct signature,

\[
(g^e)^s \equiv g^{d^e} \equiv g^{m+rs} \equiv g^m \mod p.
\]

From ElGamal to DSA

- The Digital Signature Algorithm is part of the NIST Digital Signature Standard (FIPS-186).
- Based on ElGamal, but with improved efficiency.
- The first digital signature scheme to be recognized by any government.
- Based on two primes: \(p \) which is 512–1024 bits long, and \(q \) which is a 160-bit prime factor of \(p - 1 \).
- A signature signs a SHA-1 hash value of a message. (In fact, ElGamal signing should be used with a hash function to prevent existential forgery)
- **Security** of both ElGamal and DSA schemes relies on the intractability of the DLP.
- Comparison with RSA signature scheme: key generation is faster; signature generation is about the same; DSA verification is slower. Verification is the most common operation in general.

Summary: Digital Signature Schemes

- RSA, ElGamal, DSA already described. There are several variants of ElGamal, including schemes with message recovery.
- Notice difference between randomized and deterministic schemes.
- Schemes for one-time signatures (e.g., Rabin, Merkle), require a fresh public key for each use.
- Typically more efficient than RSA/ElGamal methods.
- But tedious for multiple documents
- E-cash protocols use blind signature schemes that prevent the signer (e.g., a bank) linking a signed message (e.g., the cash) with the user.
- For real world security guarantees:
 - obtaining correct public key is vital;
 - non-repudiation supposes that private key has not been stolen;
 - we may require secure time stamps.

References

- [Handbook of Applied Cryptography](https://www.cacr.math.uwaterloo.ca/hac)
- [Cryptography: An Introduction](http://www.cs.bris.ac.uk/~nigel/Crypto.Book/)

Recommended Reading

Chapter 14 (14.2–14.4, 14.7) of Smart (3rd Ed).