
Cryptography V:
Digital Signatures

Computer Security Lecture 10

David Aspinall

School of Informatics
University of Edinburgh

10th February 2011



Outline

Basics

Constructing signature schemes

Security of signature schemes

ElGamal

DSA

Summary



Outline

Basics

Constructing signature schemes

Security of signature schemes

ElGamal

DSA

Summary



Aims
É Digital signatures allow a principal to

cryptographically bind (a representation of) its
identity to a piece of information.

É Signatures can help establish security properties
such as:

É authentication
É accountability/non-repudiation
É unforgeability
É integrity
É verifiability by independent, public or 3rd party

É Digital signatures are the asymmetric analogue of
MACs, with a crucial difference.

MACs can’t
disinguish which of A or B provided integrity to a
message (so no non-repudiation or independent
verifiability).

É NB: electronic signature is a more general
notion.



Aims
É Digital signatures allow a principal to

cryptographically bind (a representation of) its
identity to a piece of information.

É Signatures can help establish security properties
such as:

É authentication
É accountability/non-repudiation
É unforgeability
É integrity
É verifiability by independent, public or 3rd party

É Digital signatures are the asymmetric analogue of
MACs, with a crucial difference.

MACs can’t
disinguish which of A or B provided integrity to a
message (so no non-repudiation or independent
verifiability).

É NB: electronic signature is a more general
notion.



Aims
É Digital signatures allow a principal to

cryptographically bind (a representation of) its
identity to a piece of information.

É Signatures can help establish security properties
such as:
É authentication

É accountability/non-repudiation
É unforgeability
É integrity
É verifiability by independent, public or 3rd party

É Digital signatures are the asymmetric analogue of
MACs, with a crucial difference.

MACs can’t
disinguish which of A or B provided integrity to a
message (so no non-repudiation or independent
verifiability).

É NB: electronic signature is a more general
notion.



Aims
É Digital signatures allow a principal to

cryptographically bind (a representation of) its
identity to a piece of information.

É Signatures can help establish security properties
such as:
É authentication
É accountability/non-repudiation

É unforgeability
É integrity
É verifiability by independent, public or 3rd party

É Digital signatures are the asymmetric analogue of
MACs, with a crucial difference.

MACs can’t
disinguish which of A or B provided integrity to a
message (so no non-repudiation or independent
verifiability).

É NB: electronic signature is a more general
notion.



Aims
É Digital signatures allow a principal to

cryptographically bind (a representation of) its
identity to a piece of information.

É Signatures can help establish security properties
such as:
É authentication
É accountability/non-repudiation
É unforgeability

É integrity
É verifiability by independent, public or 3rd party

É Digital signatures are the asymmetric analogue of
MACs, with a crucial difference.

MACs can’t
disinguish which of A or B provided integrity to a
message (so no non-repudiation or independent
verifiability).

É NB: electronic signature is a more general
notion.



Aims
É Digital signatures allow a principal to

cryptographically bind (a representation of) its
identity to a piece of information.

É Signatures can help establish security properties
such as:
É authentication
É accountability/non-repudiation
É unforgeability
É integrity

É verifiability by independent, public or 3rd party
É Digital signatures are the asymmetric analogue of

MACs, with a crucial difference.

MACs can’t
disinguish which of A or B provided integrity to a
message (so no non-repudiation or independent
verifiability).

É NB: electronic signature is a more general
notion.



Aims
É Digital signatures allow a principal to

cryptographically bind (a representation of) its
identity to a piece of information.

É Signatures can help establish security properties
such as:
É authentication
É accountability/non-repudiation
É unforgeability
É integrity
É verifiability by independent, public or 3rd party

É Digital signatures are the asymmetric analogue of
MACs, with a crucial difference.

MACs can’t
disinguish which of A or B provided integrity to a
message (so no non-repudiation or independent
verifiability).

É NB: electronic signature is a more general
notion.



Aims
É Digital signatures allow a principal to

cryptographically bind (a representation of) its
identity to a piece of information.

É Signatures can help establish security properties
such as:
É authentication
É accountability/non-repudiation
É unforgeability
É integrity
É verifiability by independent, public or 3rd party

É Digital signatures are the asymmetric analogue of
MACs, with a crucial difference.

MACs can’t
disinguish which of A or B provided integrity to a
message (so no non-repudiation or independent
verifiability).

É NB: electronic signature is a more general
notion.



Aims
É Digital signatures allow a principal to

cryptographically bind (a representation of) its
identity to a piece of information.

É Signatures can help establish security properties
such as:
É authentication
É accountability/non-repudiation
É unforgeability
É integrity
É verifiability by independent, public or 3rd party

É Digital signatures are the asymmetric analogue of
MACs, with a crucial difference.

MACs can’t
disinguish which of A or B provided integrity to a
message (so no non-repudiation or independent
verifiability).

É NB: electronic signature is a more general
notion.



Aims
É Digital signatures allow a principal to

cryptographically bind (a representation of) its
identity to a piece of information.

É Signatures can help establish security properties
such as:
É authentication
É accountability/non-repudiation
É unforgeability
É integrity
É verifiability by independent, public or 3rd party

É Digital signatures are the asymmetric analogue of
MACs, with a crucial difference. MACs can’t
disinguish which of A or B provided integrity to a
message (so no non-repudiation or independent
verifiability).

É NB: electronic signature is a more general
notion.



Handwritten versus Digital Signatures

ink binds to paper cryptographically bound to data

verifier needs signature verifier needs public key

signatures always same depends on document

copies apparent copies indistinguishable

signer saw document computer added signature

have legal impact may have legal impact



Handwritten versus Digital Signatures

ink binds to paper cryptographically bound to data

verifier needs signature verifier needs public key

signatures always same depends on document

copies apparent copies indistinguishable

signer saw document computer added signature

have legal impact may have legal impact



Handwritten versus Digital Signatures

ink binds to paper cryptographically bound to data

verifier needs signature verifier needs public key

signatures always same depends on document

copies apparent copies indistinguishable

signer saw document computer added signature

have legal impact may have legal impact



Handwritten versus Digital Signatures

ink binds to paper cryptographically bound to data

verifier needs signature verifier needs public key

signatures always same depends on document

copies apparent copies indistinguishable

signer saw document computer added signature

have legal impact may have legal impact



Handwritten versus Digital Signatures

ink binds to paper cryptographically bound to data

verifier needs signature verifier needs public key

signatures always same depends on document

copies apparent copies indistinguishable

signer saw document computer added signature

have legal impact may have legal impact



Handwritten versus Digital Signatures

ink binds to paper cryptographically bound to data

verifier needs signature verifier needs public key

signatures always same depends on document

copies apparent copies indistinguishable

signer saw document computer added signature

have legal impact may have legal impact



Handwritten versus Digital Signatures

ink binds to paper cryptographically bound to data

verifier needs signature verifier needs public key

signatures always same depends on document

copies apparent copies indistinguishable

signer saw document computer added signature

have legal impact may have legal impact



Signature mechanism

A signature mechanism for principal A is given by:
É A message space M of messages for signing
É A set S of signatures (e.g. strings {0,1}n)
É A secret signing function SA :M→ S
É A public verification function VA :M× S → Bool

satisfying the correctness and security properties:
1. VA(m,s) = true if and only if SA(m) = s.
2. For any principal other than A, it is computationally

infeasible to find for any m ∈M, an s ∈ S such that
VA(m,s) = true.

Usually use a public algorithm yielding key-indexed
families {Ss | s ∈ K} of signing and verification functions
{Vv | v ∈ K}. Principal advertises v.
Remark: nobody has proved a signature mechanism
satisfying 2 exists, although there are good candidates.



Signature mechanism

A signature mechanism for principal A is given by:
É A message space M of messages for signing
É A set S of signatures (e.g. strings {0,1}n)
É A secret signing function SA :M→ S
É A public verification function VA :M× S → Bool

satisfying the correctness and security properties:
1. VA(m,s) = true if and only if SA(m) = s.
2. For any principal other than A, it is computationally

infeasible to find for any m ∈M, an s ∈ S such that
VA(m,s) = true.

Usually use a public algorithm yielding key-indexed
families {Ss | s ∈ K} of signing and verification functions
{Vv | v ∈ K}. Principal advertises v.
Remark: nobody has proved a signature mechanism
satisfying 2 exists, although there are good candidates.



Signature mechanism

A signature mechanism for principal A is given by:
É A message space M of messages for signing
É A set S of signatures (e.g. strings {0,1}n)
É A secret signing function SA :M→ S
É A public verification function VA :M× S → Bool

satisfying the correctness and security properties:
1. VA(m,s) = true if and only if SA(m) = s.
2. For any principal other than A, it is computationally

infeasible to find for any m ∈M, an s ∈ S such that
VA(m,s) = true.

Usually use a public algorithm yielding key-indexed
families {Ss | s ∈ K} of signing and verification functions
{Vv | v ∈ K}. Principal advertises v.

Remark: nobody has proved a signature mechanism
satisfying 2 exists, although there are good candidates.



Signature mechanism

A signature mechanism for principal A is given by:
É A message space M of messages for signing
É A set S of signatures (e.g. strings {0,1}n)
É A secret signing function SA :M→ S
É A public verification function VA :M× S → Bool

satisfying the correctness and security properties:
1. VA(m,s) = true if and only if SA(m) = s.
2. For any principal other than A, it is computationally

infeasible to find for any m ∈M, an s ∈ S such that
VA(m,s) = true.

Usually use a public algorithm yielding key-indexed
families {Ss | s ∈ K} of signing and verification functions
{Vv | v ∈ K}. Principal advertises v.
Remark: nobody has proved a signature mechanism
satisfying 2 exists, although there are good candidates.



Using a signature scheme

É To sign a message the signer A

1. Computes s = SA(m).
2. Sends the pair (m,s).

É To verify that a signature s on a message m was
created by A, another principal, the verifier:

1. Obtains the verification function VA for A.
2. Computes u = VA(m,s)
3. Accepts the signature if u = true,

Rejects it if u = false.



Using a signature scheme

É To sign a message the signer A

1. Computes s = SA(m).
2. Sends the pair (m,s).

É To verify that a signature s on a message m was
created by A, another principal, the verifier:

1. Obtains the verification function VA for A.
2. Computes u = VA(m,s)
3. Accepts the signature if u = true,

Rejects it if u = false.



Using a signature scheme

É To sign a message the signer A
1. Computes s = SA(m).

2. Sends the pair (m,s).
É To verify that a signature s on a message m was

created by A, another principal, the verifier:

1. Obtains the verification function VA for A.
2. Computes u = VA(m,s)
3. Accepts the signature if u = true,

Rejects it if u = false.



Using a signature scheme

É To sign a message the signer A
1. Computes s = SA(m).
2. Sends the pair (m,s).

É To verify that a signature s on a message m was
created by A, another principal, the verifier:

1. Obtains the verification function VA for A.
2. Computes u = VA(m,s)
3. Accepts the signature if u = true,

Rejects it if u = false.



Using a signature scheme

É To sign a message the signer A
1. Computes s = SA(m).
2. Sends the pair (m,s).

É To verify that a signature s on a message m was
created by A, another principal, the verifier:

1. Obtains the verification function VA for A.
2. Computes u = VA(m,s)
3. Accepts the signature if u = true,

Rejects it if u = false.



Using a signature scheme

É To sign a message the signer A
1. Computes s = SA(m).
2. Sends the pair (m,s).

É To verify that a signature s on a message m was
created by A, another principal, the verifier:

1. Obtains the verification function VA for A.

2. Computes u = VA(m,s)
3. Accepts the signature if u = true,

Rejects it if u = false.



Using a signature scheme

É To sign a message the signer A
1. Computes s = SA(m).
2. Sends the pair (m,s).

É To verify that a signature s on a message m was
created by A, another principal, the verifier:

1. Obtains the verification function VA for A.
2. Computes u = VA(m,s)

3. Accepts the signature if u = true,
Rejects it if u = false.



Using a signature scheme

É To sign a message the signer A
1. Computes s = SA(m).
2. Sends the pair (m,s).

É To verify that a signature s on a message m was
created by A, another principal, the verifier:

1. Obtains the verification function VA for A.
2. Computes u = VA(m,s)
3. Accepts the signature if u = true,

Rejects it if u = false.



Outline

Basics

Constructing signature schemes

Security of signature schemes

ElGamal

DSA

Summary



Digital signatures with a TTP
É Given a trusted third party, it is possible to use

symmetric cryptography techniques.

É Let secure Sam S be the TTP, who shares a key with
each principal.

É For A to send a signed contract M to B, S acts as an
intermediary.

Message 1. A→ S: {M}Kas

Message 2. S→ B: {M}Kbs

(like Wide Mouthed Frog key exchange protocol, M
should include time-stamps and names).

É If A and B disagree about a signature, a judge Judy
can verify the contracts also using S:

Message 1. J→ S: {M}Kas ,{M}Kbs

Message 2. S→ J: {yes or no}Kjs



Digital signatures with a TTP
É Given a trusted third party, it is possible to use

symmetric cryptography techniques.
É Let secure Sam S be the TTP, who shares a key with

each principal.

É For A to send a signed contract M to B, S acts as an
intermediary.

Message 1. A→ S: {M}Kas

Message 2. S→ B: {M}Kbs

(like Wide Mouthed Frog key exchange protocol, M
should include time-stamps and names).

É If A and B disagree about a signature, a judge Judy
can verify the contracts also using S:

Message 1. J→ S: {M}Kas ,{M}Kbs

Message 2. S→ J: {yes or no}Kjs



Digital signatures with a TTP
É Given a trusted third party, it is possible to use

symmetric cryptography techniques.
É Let secure Sam S be the TTP, who shares a key with

each principal.
É For A to send a signed contract M to B, S acts as an

intermediary.

Message 1. A→ S: {M}Kas

Message 2. S→ B: {M}Kbs

(like Wide Mouthed Frog key exchange protocol, M
should include time-stamps and names).

É If A and B disagree about a signature, a judge Judy
can verify the contracts also using S:

Message 1. J→ S: {M}Kas ,{M}Kbs

Message 2. S→ J: {yes or no}Kjs



Digital signatures with a TTP
É Given a trusted third party, it is possible to use

symmetric cryptography techniques.
É Let secure Sam S be the TTP, who shares a key with

each principal.
É For A to send a signed contract M to B, S acts as an

intermediary.

Message 1. A→ S: {M}Kas

Message 2. S→ B: {M}Kbs

(like Wide Mouthed Frog key exchange protocol, M
should include time-stamps and names).

É If A and B disagree about a signature, a judge Judy
can verify the contracts also using S:

Message 1. J→ S: {M}Kas ,{M}Kbs

Message 2. S→ J: {yes or no}Kjs



Digital signatures from PK encryption
É Suppose we have a public-key encryption scheme

with M = C, and (d,e) a key-pair. Then because Ee

and Dd are both permutations on M, we have that:

Dd(Ee(m)) = Ee(Dd(m)) = m for all m ∈M

A public-key scheme of this type is called
reversible.

É RSA is reversible, but not every PK scheme is.
É We can define a digital signature scheme by

reversing encryption and decryption:

É Message space M, signature space C (=M).
É the signing function SA = Dd
É the verification function VA is defined by

VA(m,s) =

�

true if Ee(s) = m,
false otherwise.



Digital signatures from PK encryption
É Suppose we have a public-key encryption scheme

with M = C, and (d,e) a key-pair. Then because Ee

and Dd are both permutations on M, we have that:

Dd(Ee(m)) = Ee(Dd(m)) = m for all m ∈M

A public-key scheme of this type is called
reversible.

É RSA is reversible, but not every PK scheme is.

É We can define a digital signature scheme by
reversing encryption and decryption:

É Message space M, signature space C (=M).
É the signing function SA = Dd
É the verification function VA is defined by

VA(m,s) =

�

true if Ee(s) = m,
false otherwise.



Digital signatures from PK encryption
É Suppose we have a public-key encryption scheme

with M = C, and (d,e) a key-pair. Then because Ee

and Dd are both permutations on M, we have that:

Dd(Ee(m)) = Ee(Dd(m)) = m for all m ∈M

A public-key scheme of this type is called
reversible.

É RSA is reversible, but not every PK scheme is.
É We can define a digital signature scheme by

reversing encryption and decryption:

É Message space M, signature space C (=M).
É the signing function SA = Dd
É the verification function VA is defined by

VA(m,s) =

�

true if Ee(s) = m,
false otherwise.



Digital signatures from PK encryption
É Suppose we have a public-key encryption scheme

with M = C, and (d,e) a key-pair. Then because Ee

and Dd are both permutations on M, we have that:

Dd(Ee(m)) = Ee(Dd(m)) = m for all m ∈M

A public-key scheme of this type is called
reversible.

É RSA is reversible, but not every PK scheme is.
É We can define a digital signature scheme by

reversing encryption and decryption:
É Message space M, signature space C (=M).

É the signing function SA = Dd
É the verification function VA is defined by

VA(m,s) =

�

true if Ee(s) = m,
false otherwise.



Digital signatures from PK encryption
É Suppose we have a public-key encryption scheme

with M = C, and (d,e) a key-pair. Then because Ee

and Dd are both permutations on M, we have that:

Dd(Ee(m)) = Ee(Dd(m)) = m for all m ∈M

A public-key scheme of this type is called
reversible.

É RSA is reversible, but not every PK scheme is.
É We can define a digital signature scheme by

reversing encryption and decryption:
É Message space M, signature space C (=M).
É the signing function SA = Dd

É the verification function VA is defined by

VA(m,s) =

�

true if Ee(s) = m,
false otherwise.



Digital signatures from PK encryption
É Suppose we have a public-key encryption scheme

with M = C, and (d,e) a key-pair. Then because Ee

and Dd are both permutations on M, we have that:

Dd(Ee(m)) = Ee(Dd(m)) = m for all m ∈M

A public-key scheme of this type is called
reversible.

É RSA is reversible, but not every PK scheme is.
É We can define a digital signature scheme by

reversing encryption and decryption:
É Message space M, signature space C (=M).
É the signing function SA = Dd
É the verification function VA is defined by

VA(m,s) =

�

true if Ee(s) = m,
false otherwise.



Outline

Basics

Constructing signature schemes

Security of signature schemes

ElGamal

DSA

Summary



Attacks on signature schemes [HAC]
É An adversary wants to forge signatures. Cases:

1. Total break. Adversary can compute the private
key or find an equivalent signing function.

2. Selective forgery. Adversary can create a valid
signature for some chosen message, without using
the signer.

3. Existential forgery. Adversary can create a valid
signature for at least one message, without explicit
choice of the message. May involve signer.

É The adversary may have different knowledge
levels. For PK schemes:

1. Key-only attack: adversary only knows PK.
2. Known-message attack: adversary has

signatures for some known (not chosen) messages.
3. Chosen-message attack: adversary can obtain

signatures for messages of his choosing. Messages
may be determined in advance or in adaptive way,
using signer as oracle.



Attacks on signature schemes [HAC]
É An adversary wants to forge signatures. Cases:

1. Total break. Adversary can compute the private
key or find an equivalent signing function.

2. Selective forgery. Adversary can create a valid
signature for some chosen message, without using
the signer.

3. Existential forgery. Adversary can create a valid
signature for at least one message, without explicit
choice of the message. May involve signer.

É The adversary may have different knowledge
levels. For PK schemes:

1. Key-only attack: adversary only knows PK.
2. Known-message attack: adversary has

signatures for some known (not chosen) messages.
3. Chosen-message attack: adversary can obtain

signatures for messages of his choosing. Messages
may be determined in advance or in adaptive way,
using signer as oracle.



Attacks on signature schemes [HAC]
É An adversary wants to forge signatures. Cases:

1. Total break. Adversary can compute the private
key or find an equivalent signing function.

2. Selective forgery. Adversary can create a valid
signature for some chosen message, without using
the signer.

3. Existential forgery. Adversary can create a valid
signature for at least one message, without explicit
choice of the message. May involve signer.

É The adversary may have different knowledge
levels. For PK schemes:

1. Key-only attack: adversary only knows PK.
2. Known-message attack: adversary has

signatures for some known (not chosen) messages.
3. Chosen-message attack: adversary can obtain

signatures for messages of his choosing. Messages
may be determined in advance or in adaptive way,
using signer as oracle.



Attacks on signature schemes [HAC]
É An adversary wants to forge signatures. Cases:

1. Total break. Adversary can compute the private
key or find an equivalent signing function.

2. Selective forgery. Adversary can create a valid
signature for some chosen message, without using
the signer.

3. Existential forgery. Adversary can create a valid
signature for at least one message, without explicit
choice of the message. May involve signer.

É The adversary may have different knowledge
levels. For PK schemes:

1. Key-only attack: adversary only knows PK.
2. Known-message attack: adversary has

signatures for some known (not chosen) messages.
3. Chosen-message attack: adversary can obtain

signatures for messages of his choosing. Messages
may be determined in advance or in adaptive way,
using signer as oracle.



Attacks on signature schemes [HAC]
É An adversary wants to forge signatures. Cases:

1. Total break. Adversary can compute the private
key or find an equivalent signing function.

2. Selective forgery. Adversary can create a valid
signature for some chosen message, without using
the signer.

3. Existential forgery. Adversary can create a valid
signature for at least one message, without explicit
choice of the message. May involve signer.

É The adversary may have different knowledge
levels. For PK schemes:

1. Key-only attack: adversary only knows PK.
2. Known-message attack: adversary has

signatures for some known (not chosen) messages.
3. Chosen-message attack: adversary can obtain

signatures for messages of his choosing. Messages
may be determined in advance or in adaptive way,
using signer as oracle.



Attacks on signature schemes [HAC]
É An adversary wants to forge signatures. Cases:

1. Total break. Adversary can compute the private
key or find an equivalent signing function.

2. Selective forgery. Adversary can create a valid
signature for some chosen message, without using
the signer.

3. Existential forgery. Adversary can create a valid
signature for at least one message, without explicit
choice of the message. May involve signer.

É The adversary may have different knowledge
levels. For PK schemes:

1. Key-only attack: adversary only knows PK.

2. Known-message attack: adversary has
signatures for some known (not chosen) messages.

3. Chosen-message attack: adversary can obtain
signatures for messages of his choosing. Messages
may be determined in advance or in adaptive way,
using signer as oracle.



Attacks on signature schemes [HAC]
É An adversary wants to forge signatures. Cases:

1. Total break. Adversary can compute the private
key or find an equivalent signing function.

2. Selective forgery. Adversary can create a valid
signature for some chosen message, without using
the signer.

3. Existential forgery. Adversary can create a valid
signature for at least one message, without explicit
choice of the message. May involve signer.

É The adversary may have different knowledge
levels. For PK schemes:

1. Key-only attack: adversary only knows PK.
2. Known-message attack: adversary has

signatures for some known (not chosen) messages.

3. Chosen-message attack: adversary can obtain
signatures for messages of his choosing. Messages
may be determined in advance or in adaptive way,
using signer as oracle.



Attacks on signature schemes [HAC]
É An adversary wants to forge signatures. Cases:

1. Total break. Adversary can compute the private
key or find an equivalent signing function.

2. Selective forgery. Adversary can create a valid
signature for some chosen message, without using
the signer.

3. Existential forgery. Adversary can create a valid
signature for at least one message, without explicit
choice of the message. May involve signer.

É The adversary may have different knowledge
levels. For PK schemes:

1. Key-only attack: adversary only knows PK.
2. Known-message attack: adversary has

signatures for some known (not chosen) messages.
3. Chosen-message attack: adversary can obtain

signatures for messages of his choosing. Messages
may be determined in advance or in adaptive way,
using signer as oracle.



Existential forgery

É The previous scheme is too simple because
signatures are forgeable: a principal B can generate
a random s ∈ S as a signature, apply the public
encryption function to get a message m = Ee(s),
and transmit (m,s).

É Obviously this verifies! It is an example of
existential forgery.

É The message m is not likely to be of B’s choosing
(and probably garbage).

É But this ability violates property 2 given earlier.



Existential forgery

É The previous scheme is too simple because
signatures are forgeable: a principal B can generate
a random s ∈ S as a signature, apply the public
encryption function to get a message m = Ee(s),
and transmit (m,s).

É Obviously this verifies! It is an example of
existential forgery.

É The message m is not likely to be of B’s choosing
(and probably garbage).

É But this ability violates property 2 given earlier.



Existential forgery

É The previous scheme is too simple because
signatures are forgeable: a principal B can generate
a random s ∈ S as a signature, apply the public
encryption function to get a message m = Ee(s),
and transmit (m,s).

É Obviously this verifies! It is an example of
existential forgery.

É The message m is not likely to be of B’s choosing
(and probably garbage).

É But this ability violates property 2 given earlier.



Existential forgery

É The previous scheme is too simple because
signatures are forgeable: a principal B can generate
a random s ∈ S as a signature, apply the public
encryption function to get a message m = Ee(s),
and transmit (m,s).

É Obviously this verifies! It is an example of
existential forgery.

É The message m is not likely to be of B’s choosing
(and probably garbage).

É But this ability violates property 2 given earlier.



Signatures with redundancy

É A fix to reduce likelihood of existential forgery is to
take M′ ⊂M to be messages with a special
redundant structure, which is publicly known e.g.,
messages padded to an even length, surrounded
with a fixed bit pattern.

É This format is easily recognized by the verifier:

VA(s) =

�

true if Ee(s) ∈M′,
false otherwise.

É Now A only transmits the signature s, since the
message m = Ee(s) can be recovered by the
verification function.

É This property is message recovery, the scheme is
called a signature scheme with recovery.

É Existential forgery is now less likely.



Signatures with redundancy

É A fix to reduce likelihood of existential forgery is to
take M′ ⊂M to be messages with a special
redundant structure, which is publicly known e.g.,
messages padded to an even length, surrounded
with a fixed bit pattern.

É This format is easily recognized by the verifier:

VA(s) =

�

true if Ee(s) ∈M′,
false otherwise.

É Now A only transmits the signature s, since the
message m = Ee(s) can be recovered by the
verification function.

É This property is message recovery, the scheme is
called a signature scheme with recovery.

É Existential forgery is now less likely.



Signatures with redundancy

É A fix to reduce likelihood of existential forgery is to
take M′ ⊂M to be messages with a special
redundant structure, which is publicly known e.g.,
messages padded to an even length, surrounded
with a fixed bit pattern.

É This format is easily recognized by the verifier:

VA(s) =

�

true if Ee(s) ∈M′,
false otherwise.

É Now A only transmits the signature s, since the
message m = Ee(s) can be recovered by the
verification function.

É This property is message recovery, the scheme is
called a signature scheme with recovery.

É Existential forgery is now less likely.



Signatures with redundancy

É A fix to reduce likelihood of existential forgery is to
take M′ ⊂M to be messages with a special
redundant structure, which is publicly known e.g.,
messages padded to an even length, surrounded
with a fixed bit pattern.

É This format is easily recognized by the verifier:

VA(s) =

�

true if Ee(s) ∈M′,
false otherwise.

É Now A only transmits the signature s, since the
message m = Ee(s) can be recovered by the
verification function.

É This property is message recovery, the scheme is
called a signature scheme with recovery.

É Existential forgery is now less likely.



Signatures with redundancy

É A fix to reduce likelihood of existential forgery is to
take M′ ⊂M to be messages with a special
redundant structure, which is publicly known e.g.,
messages padded to an even length, surrounded
with a fixed bit pattern.

É This format is easily recognized by the verifier:

VA(s) =

�

true if Ee(s) ∈M′,
false otherwise.

É Now A only transmits the signature s, since the
message m = Ee(s) can be recovered by the
verification function.

É This property is message recovery, the scheme is
called a signature scheme with recovery.

É Existential forgery is now less likely.



Signatures and hash functions

É In practice, usually the signing function is
constructed by first making a hash of the input
document, and signing that. Reasons:

1. efficiency: signature is on smaller text
2. avoid attacks on cipher system

É Signer: computes and transmits (m,s) where
s = SA(h(m)).

É Verifier: computes h(m) and verifies VA(h(m), s).
É The hash function must satisfy appropriate

properties (see Hash Functions lecture).
É This is called a signature scheme with

appendix.



Signatures and hash functions

É In practice, usually the signing function is
constructed by first making a hash of the input
document, and signing that. Reasons:

1. efficiency: signature is on smaller text

2. avoid attacks on cipher system

É Signer: computes and transmits (m,s) where
s = SA(h(m)).

É Verifier: computes h(m) and verifies VA(h(m), s).
É The hash function must satisfy appropriate

properties (see Hash Functions lecture).
É This is called a signature scheme with

appendix.



Signatures and hash functions

É In practice, usually the signing function is
constructed by first making a hash of the input
document, and signing that. Reasons:

1. efficiency: signature is on smaller text
2. avoid attacks on cipher system

É Signer: computes and transmits (m,s) where
s = SA(h(m)).

É Verifier: computes h(m) and verifies VA(h(m), s).
É The hash function must satisfy appropriate

properties (see Hash Functions lecture).
É This is called a signature scheme with

appendix.



Signatures and hash functions

É In practice, usually the signing function is
constructed by first making a hash of the input
document, and signing that. Reasons:

1. efficiency: signature is on smaller text
2. avoid attacks on cipher system

É Signer: computes and transmits (m,s) where
s = SA(h(m)).

É Verifier: computes h(m) and verifies VA(h(m), s).
É The hash function must satisfy appropriate

properties (see Hash Functions lecture).
É This is called a signature scheme with

appendix.



Signatures and hash functions

É In practice, usually the signing function is
constructed by first making a hash of the input
document, and signing that. Reasons:

1. efficiency: signature is on smaller text
2. avoid attacks on cipher system

É Signer: computes and transmits (m,s) where
s = SA(h(m)).

É Verifier: computes h(m) and verifies VA(h(m), s).

É The hash function must satisfy appropriate
properties (see Hash Functions lecture).

É This is called a signature scheme with
appendix.



Signatures and hash functions

É In practice, usually the signing function is
constructed by first making a hash of the input
document, and signing that. Reasons:

1. efficiency: signature is on smaller text
2. avoid attacks on cipher system

É Signer: computes and transmits (m,s) where
s = SA(h(m)).

É Verifier: computes h(m) and verifies VA(h(m), s).
É The hash function must satisfy appropriate

properties (see Hash Functions lecture).

É This is called a signature scheme with
appendix.



Signatures and hash functions

É In practice, usually the signing function is
constructed by first making a hash of the input
document, and signing that. Reasons:

1. efficiency: signature is on smaller text
2. avoid attacks on cipher system

É Signer: computes and transmits (m,s) where
s = SA(h(m)).

É Verifier: computes h(m) and verifies VA(h(m), s).
É The hash function must satisfy appropriate

properties (see Hash Functions lecture).
É This is called a signature scheme with

appendix.



RSA Signatures

É Setup: n = pq computed as product of two primes.
ed ≡ 1 mod ϕ(n). (e,n) is the public key.

É To sign a message m, compute the signature
s = h(m)d mod n. Only the owner of the private key
d is able to compute the signature.

É To verify the signature, upon receipt of (m,s),
compute se mod n and verify whether it equals h(m)



RSA Signatures

É Setup: n = pq computed as product of two primes.
ed ≡ 1 mod ϕ(n). (e,n) is the public key.

É To sign a message m, compute the signature
s = h(m)d mod n. Only the owner of the private key
d is able to compute the signature.

É To verify the signature, upon receipt of (m,s),
compute se mod n and verify whether it equals h(m)



RSA Signatures

É Setup: n = pq computed as product of two primes.
ed ≡ 1 mod ϕ(n). (e,n) is the public key.

É To sign a message m, compute the signature
s = h(m)d mod n. Only the owner of the private key
d is able to compute the signature.

É To verify the signature, upon receipt of (m,s),
compute se mod n and verify whether it equals h(m)



Distributed RSA Signatures
É Signatures can optionally be distributed so that

each of t users contributes to the signature. A
trusted party T computes t shares such that

d =
t
∑

i=1

di mod ϕ(n)

and securely distributes di to each user i.

É To compute a signature on a message m, each user
i computes oi = h(m)di mod n.

É A signer can compute the resultant signature as

s =
t
∏

i=1

oi mod n

É Secret sharing can also be used so that l < t users
could be used to construct a signature.



Distributed RSA Signatures
É Signatures can optionally be distributed so that

each of t users contributes to the signature. A
trusted party T computes t shares such that

d =
t
∑

i=1

di mod ϕ(n)

and securely distributes di to each user i.
É To compute a signature on a message m, each user

i computes oi = h(m)di mod n.

É A signer can compute the resultant signature as

s =
t
∏

i=1

oi mod n

É Secret sharing can also be used so that l < t users
could be used to construct a signature.



Distributed RSA Signatures
É Signatures can optionally be distributed so that

each of t users contributes to the signature. A
trusted party T computes t shares such that

d =
t
∑

i=1

di mod ϕ(n)

and securely distributes di to each user i.
É To compute a signature on a message m, each user

i computes oi = h(m)di mod n.
É A signer can compute the resultant signature as

s =
t
∏

i=1

oi mod n

É Secret sharing can also be used so that l < t users
could be used to construct a signature.



Distributed RSA Signatures
É Signatures can optionally be distributed so that

each of t users contributes to the signature. A
trusted party T computes t shares such that

d =
t
∑

i=1

di mod ϕ(n)

and securely distributes di to each user i.
É To compute a signature on a message m, each user

i computes oi = h(m)di mod n.
É A signer can compute the resultant signature as

s =
t
∏

i=1

oi mod n

É Secret sharing can also be used so that l < t users
could be used to construct a signature.



Outline

Basics

Constructing signature schemes

Security of signature schemes

ElGamal

DSA

Summary



ElGamal signatures
É Setup as encryption: p an appropriate prime, g a

generator of Z∗
p

, and the private signing key, d a
random integer with 1 ≤ d ≤ p− 2.

É The public verification key is (p,g,gd mod p).
É To sign a message m, 0 ≤m ≤ p, the signer picks a

random secret number r with 1 ≤ r ≤ p− 2 and
gcd(r, p− 1) = 1, and computes:

Sd(m) = (e, s) where e = gr mod p
de+ rs ≡m (mod p− 1).

É The verification function checks that 1 ≤ e ≤ p− 1,
and an equation:

V(p,g,gd)(m, (e, s)) =

¨

true if (gd)
e
es ≡ gm (mod p),

false otherwise.

É Verification works because for a correct signature,

(gd)
e
es ≡ gde+rs ≡ gm (mod p).



ElGamal signatures
É Setup as encryption: p an appropriate prime, g a

generator of Z∗
p

, and the private signing key, d a
random integer with 1 ≤ d ≤ p− 2.

É The public verification key is (p,g,gd mod p).

É To sign a message m, 0 ≤m ≤ p, the signer picks a
random secret number r with 1 ≤ r ≤ p− 2 and
gcd(r, p− 1) = 1, and computes:

Sd(m) = (e, s) where e = gr mod p
de+ rs ≡m (mod p− 1).

É The verification function checks that 1 ≤ e ≤ p− 1,
and an equation:

V(p,g,gd)(m, (e, s)) =

¨

true if (gd)
e
es ≡ gm (mod p),

false otherwise.

É Verification works because for a correct signature,

(gd)
e
es ≡ gde+rs ≡ gm (mod p).



ElGamal signatures
É Setup as encryption: p an appropriate prime, g a

generator of Z∗
p

, and the private signing key, d a
random integer with 1 ≤ d ≤ p− 2.

É The public verification key is (p,g,gd mod p).
É To sign a message m, 0 ≤m ≤ p, the signer picks a

random secret number r with 1 ≤ r ≤ p− 2 and
gcd(r, p− 1) = 1, and computes:

Sd(m) = (e, s) where e = gr mod p
de+ rs ≡m (mod p− 1).

É The verification function checks that 1 ≤ e ≤ p− 1,
and an equation:

V(p,g,gd)(m, (e, s)) =

¨

true if (gd)
e
es ≡ gm (mod p),

false otherwise.

É Verification works because for a correct signature,

(gd)
e
es ≡ gde+rs ≡ gm (mod p).



ElGamal signatures
É Setup as encryption: p an appropriate prime, g a

generator of Z∗
p

, and the private signing key, d a
random integer with 1 ≤ d ≤ p− 2.

É The public verification key is (p,g,gd mod p).
É To sign a message m, 0 ≤m ≤ p, the signer picks a

random secret number r with 1 ≤ r ≤ p− 2 and
gcd(r, p− 1) = 1, and computes:

Sd(m) = (e, s) where e = gr mod p
de+ rs ≡m (mod p− 1).

É The verification function checks that 1 ≤ e ≤ p− 1,
and an equation:

V(p,g,gd)(m, (e, s)) =

¨

true if (gd)
e
es ≡ gm (mod p),

false otherwise.

É Verification works because for a correct signature,

(gd)
e
es ≡ gde+rs ≡ gm (mod p).



ElGamal signatures
É Setup as encryption: p an appropriate prime, g a

generator of Z∗
p

, and the private signing key, d a
random integer with 1 ≤ d ≤ p− 2.

É The public verification key is (p,g,gd mod p).
É To sign a message m, 0 ≤m ≤ p, the signer picks a

random secret number r with 1 ≤ r ≤ p− 2 and
gcd(r, p− 1) = 1, and computes:

Sd(m) = (e, s) where e = gr mod p
de+ rs ≡m (mod p− 1).

É The verification function checks that 1 ≤ e ≤ p− 1,
and an equation:

V(p,g,gd)(m, (e, s)) =

¨

true if (gd)
e
es ≡ gm (mod p),

false otherwise.

É Verification works because for a correct signature,

(gd)
e
es ≡ gde+rs ≡ gm (mod p).



Outline

Basics

Constructing signature schemes

Security of signature schemes

ElGamal

DSA

Summary



From ElGamal to DSA
É The Digital Signature Algorithm is part of the NIST

Digitial Signature Standard [FIPS-186].

É Based on ElGamal, but with improved efficiency.
É The first digital signature scheme to be recognized

by any government.
É Based on two primes: p, which is 512–1024 bits

long, and q, which is a 160-bit prime factor of p− 1.
A signature signs a SHA-1 hash value of a message.
(In fact, ElGamal signing should be used with a
hash function to prevent existential forgery)

É Security of both ElGamal and DSA schemes relies
on the intractability of the DLP.

É Comparison with RSA signature scheme: key
generation is faster; signature generation is about
the same; DSA verification is slower. Verification is
the most common operation in general.

http://www.itl.nist.gov/fipspubs/fip186.htm


From ElGamal to DSA
É The Digital Signature Algorithm is part of the NIST

Digitial Signature Standard [FIPS-186].
É Based on ElGamal, but with improved efficiency.

É The first digital signature scheme to be recognized
by any government.

É Based on two primes: p, which is 512–1024 bits
long, and q, which is a 160-bit prime factor of p− 1.
A signature signs a SHA-1 hash value of a message.
(In fact, ElGamal signing should be used with a
hash function to prevent existential forgery)

É Security of both ElGamal and DSA schemes relies
on the intractability of the DLP.

É Comparison with RSA signature scheme: key
generation is faster; signature generation is about
the same; DSA verification is slower. Verification is
the most common operation in general.

http://www.itl.nist.gov/fipspubs/fip186.htm


From ElGamal to DSA
É The Digital Signature Algorithm is part of the NIST

Digitial Signature Standard [FIPS-186].
É Based on ElGamal, but with improved efficiency.
É The first digital signature scheme to be recognized

by any government.

É Based on two primes: p, which is 512–1024 bits
long, and q, which is a 160-bit prime factor of p− 1.
A signature signs a SHA-1 hash value of a message.
(In fact, ElGamal signing should be used with a
hash function to prevent existential forgery)

É Security of both ElGamal and DSA schemes relies
on the intractability of the DLP.

É Comparison with RSA signature scheme: key
generation is faster; signature generation is about
the same; DSA verification is slower. Verification is
the most common operation in general.

http://www.itl.nist.gov/fipspubs/fip186.htm


From ElGamal to DSA
É The Digital Signature Algorithm is part of the NIST

Digitial Signature Standard [FIPS-186].
É Based on ElGamal, but with improved efficiency.
É The first digital signature scheme to be recognized

by any government.
É Based on two primes: p, which is 512–1024 bits

long, and q, which is a 160-bit prime factor of p− 1.
A signature signs a SHA-1 hash value of a message.
(In fact, ElGamal signing should be used with a
hash function to prevent existential forgery)

É Security of both ElGamal and DSA schemes relies
on the intractability of the DLP.

É Comparison with RSA signature scheme: key
generation is faster; signature generation is about
the same; DSA verification is slower. Verification is
the most common operation in general.

http://www.itl.nist.gov/fipspubs/fip186.htm


From ElGamal to DSA
É The Digital Signature Algorithm is part of the NIST

Digitial Signature Standard [FIPS-186].
É Based on ElGamal, but with improved efficiency.
É The first digital signature scheme to be recognized

by any government.
É Based on two primes: p, which is 512–1024 bits

long, and q, which is a 160-bit prime factor of p− 1.
A signature signs a SHA-1 hash value of a message.
(In fact, ElGamal signing should be used with a
hash function to prevent existential forgery)

É Security of both ElGamal and DSA schemes relies
on the intractability of the DLP.

É Comparison with RSA signature scheme: key
generation is faster; signature generation is about
the same; DSA verification is slower. Verification is
the most common operation in general.

http://www.itl.nist.gov/fipspubs/fip186.htm


From ElGamal to DSA
É The Digital Signature Algorithm is part of the NIST

Digitial Signature Standard [FIPS-186].
É Based on ElGamal, but with improved efficiency.
É The first digital signature scheme to be recognized

by any government.
É Based on two primes: p, which is 512–1024 bits

long, and q, which is a 160-bit prime factor of p− 1.
A signature signs a SHA-1 hash value of a message.
(In fact, ElGamal signing should be used with a
hash function to prevent existential forgery)

É Security of both ElGamal and DSA schemes relies
on the intractability of the DLP.

É Comparison with RSA signature scheme: key
generation is faster; signature generation is about
the same; DSA verification is slower. Verification is
the most common operation in general.

http://www.itl.nist.gov/fipspubs/fip186.htm


Outline

Basics

Constructing signature schemes

Security of signature schemes

ElGamal

DSA

Summary



Summary: Digital Signature Schemes
É RSA, ElGamal, DSA already described. There are

several variants of ElGamal, including schemes with
message recovery.

É Notice difference between randomized and
deterministic schemes.

É Schemes for one-time signatures (e.g., Rabin,
Merkle), require a fresh public key for each use.
É Typically more efficient than RSA/ElGamal methods.
É But tedious for multiple documents

É E-cash protocols use blind signature schemes
that prevent the signer (e.g., a bank) linking a
signed message (e.g., the cash) with the user.

É For real world security guarantees:
É obtaining correct public key is vital;
É non-repudiation supposes that private key has

not been stolen;
É we may require secure time stamps.



References

Alfred J. Menezes, Paul C. Van Oorschot, and Scott A.
Vanstone, editors. Handbook of Applied Cryptography.
CRC Press Series on Discrete Mathematics and Its
Applications. CRC Press, 1997.
Online version at
http://www.cacr.math.uwaterloo.ca/hac.
Digital signatures covered in Section 1.6 and Chapter 11.

Nigel Smart. Cryptography: An Introduction.
McGraw-Hill, 2003. Third edition online:
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/

Recommended Reading

Chapter 14 (14.2–14.4, 14.7) of Smart (3rd Ed).

http://www.cacr.math.uwaterloo.ca/hac
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/

	Outline
	Basics
	Constructing signature schemes
	Security of signature schemes
	ElGamal
	DSA
	Summary

