
Security Models
Computer Security Lecture 13

David Aspinall

School of Informatics
University of Edinburgh

28th February 2011



Outline

Access and information flow

Access control mechanisms

Multi-level security

The BLP security model

Summary



Outline

Access and information flow

Access control mechanisms

Multi-level security

The BLP security model

Summary



System security policies and models

A security policy describes requirements for a system.

A security model is a framework in which a policy can

be described.

There are two basic paradigms:

◮ access control

◮ information flow control



Access control

A guard controls whether a principal (the subject) is

allowed access to a resource (the object).

Subject
Access

request

︸ ︷︷ ︸

Authentication

Reference

monitor
Object

︸ ︷︷ ︸

Authorization



Information flow control

A guard controls whether information may flow from a
resource (the object) to a principal (the subject).

Object

︸ ︷︷ ︸

Authorization

Reference

monitor
Subject

︸ ︷︷ ︸

Authentication

This is the dual notion, sometimes used when

confidentiality is the primary concern.



Access operations: modes and rights

◮ To define types of access, we define some

fundamental access modes and access rights.



Access operations: modes and rights

◮ To define types of access, we define some

fundamental access modes and access rights.

◮ Modes are ways of accessing objects;

rights are combinations of modes.



Access operations: modes and rights

◮ To define types of access, we define some

fundamental access modes and access rights.

◮ Modes are ways of accessing objects;

rights are combinations of modes.

◮ Access rights are the model’s level of granularity

for defining security policy. Each real operation

requires particular access rights.



Access operations: modes and rights

◮ To define types of access, we define some

fundamental access modes and access rights.

◮ Modes are ways of accessing objects;

rights are combinations of modes.

◮ Access rights are the model’s level of granularity

for defining security policy. Each real operation

requires particular access rights.

◮ We will consider the access modes and rights of the
influential Bell-LaPadula (BLP) model.



Access operations: modes and rights

◮ To define types of access, we define some

fundamental access modes and access rights.

◮ Modes are ways of accessing objects;

rights are combinations of modes.

◮ Access rights are the model’s level of granularity

for defining security policy. Each real operation

requires particular access rights.

◮ We will consider the access modes and rights of the
influential Bell-LaPadula (BLP) model.
◮ BLP enforces confidentiality



Access operations: modes and rights

◮ To define types of access, we define some

fundamental access modes and access rights.

◮ Modes are ways of accessing objects;

rights are combinations of modes.

◮ Access rights are the model’s level of granularity

for defining security policy. Each real operation

requires particular access rights.

◮ We will consider the access modes and rights of the
influential Bell-LaPadula (BLP) model.
◮ BLP enforces confidentiality
◮ Other models enforce integrity, or a combination



Access operations in BLP

The access modes of BLP are:

observe examine contents of an object

alter change contents of an object

The access rights and their profiles are:

observe alter

exec

read Ø

append Ø

write Ø Ø

Profiles and names of rights differ between systems, or

even for different subject kinds. E.g., sometimes have a

delete. In Unix, exec for directories indicates ability to

read the directory. The profiles of rights are used to

define security properties in the model.



Ownership and identity

◮ Who may set the security policy? A resource may
have a owner who controls access on a
case-by-case basis, or the resource may be
controlled by a uniform system-wide policy.



Ownership and identity

◮ Who may set the security policy? A resource may
have a owner who controls access on a
case-by-case basis, or the resource may be
controlled by a uniform system-wide policy.
◮ discretionary access control (DAC):
owners decide who may access their objects

◮ mandatory access control (MAC):
policy set system-wide

A mixture of both may apply.



Ownership and identity

◮ Who may set the security policy? A resource may
have a owner who controls access on a
case-by-case basis, or the resource may be
controlled by a uniform system-wide policy.
◮ discretionary access control (DAC):
owners decide who may access their objects

◮ mandatory access control (MAC):
policy set system-wide

A mixture of both may apply.

◮ Owners of resources may be principals in the

system: subjects themselves under access control.

BLP does not (directly) consider operations to

modify access controls (e.g., chown in Windows),

nor explain when such operations are safe.



Ownership and identity

◮ Who may set the security policy? A resource may
have a owner who controls access on a
case-by-case basis, or the resource may be
controlled by a uniform system-wide policy.
◮ discretionary access control (DAC):
owners decide who may access their objects

◮ mandatory access control (MAC):
policy set system-wide

A mixture of both may apply.

◮ Owners of resources may be principals in the

system: subjects themselves under access control.

BLP does not (directly) consider operations to

modify access controls (e.g., chown in Windows),

nor explain when such operations are safe.

◮ The identity of subjects is also flexible: e.g.,

identity changes during operations (SUID programs

in Unix). Again, this doesn’t fit BLP.



Outline

Access and information flow

Access control mechanisms

Multi-level security

The BLP security model

Summary



Access control structures

◮ How are access control rights defined? Many
schemes, but ultimately modelled by:



Access control structures

◮ How are access control rights defined? Many
schemes, but ultimately modelled by:
◮ A set S of subjects, a set O of objects



Access control structures

◮ How are access control rights defined? Many
schemes, but ultimately modelled by:
◮ A set S of subjects, a set O of objects
◮ A set A of operations (modelled by access rights),
we’ll consider A = {exec, read,append,write}.



Access control structures

◮ How are access control rights defined? Many
schemes, but ultimately modelled by:
◮ A set S of subjects, a set O of objects
◮ A set A of operations (modelled by access rights),
we’ll consider A = {exec, read,append,write}.

◮ An access control matrix

M = (Mso)s∈S,o∈O

where each entry Mso ⊆ A defines rights for s to
access o.



Access control structures

◮ How are access control rights defined? Many
schemes, but ultimately modelled by:
◮ A set S of subjects, a set O of objects
◮ A set A of operations (modelled by access rights),
we’ll consider A = {exec, read,append,write}.

◮ An access control matrix

M = (Mso)s∈S,o∈O

where each entry Mso ⊆ A defines rights for s to
access o.

◮ Example matrix for S = {Alice,Bob} and three

objects:

bob.doc edit.exe fun.com

Alice {} {exec} {exec, read}

Bob {read,write} {exec} {exec, read,write}



Representing the access control matrix

◮ Implementing M directly is impractical, so different

schemes are used. Complementary possibilities:

either use capabilities (store M by rows) or use

access control lists (store M by columns)



Representing the access control matrix

◮ Implementing M directly is impractical, so different

schemes are used. Complementary possibilities:

either use capabilities (store M by rows) or use

access control lists (store M by columns)

◮ A capability is an unforgeable token that specifies

a subject’s access rights. Pros: can pass around

capabilities; good fit with discr. AC. Cons: difficult to

revoke, or find out who has, access to a particular

resource (must examine all capabilities). Interest

reinstated recently with distributed and mobile

computation.



Representing the access control matrix

◮ Implementing M directly is impractical, so different

schemes are used. Complementary possibilities:

either use capabilities (store M by rows) or use

access control lists (store M by columns)

◮ A capability is an unforgeable token that specifies

a subject’s access rights. Pros: can pass around

capabilities; good fit with discr. AC. Cons: difficult to

revoke, or find out who has, access to a particular

resource (must examine all capabilities). Interest

reinstated recently with distributed and mobile

computation.

◮ An access control list (ACL) stores the access

rights to an object with the object itself. Pros: good

fit with object-biased OSes. Cons: difficult to

revoke, or find out, permissions of a particular

subject (must search all ACLs).



Outline

Access and information flow

Access control mechanisms

Multi-level security

The BLP security model

Summary



Multi-level security

◮ Multi Level Security (MLS) systems originated in

the military. A security level is a label for subjects

and objects, to describe a policy.



Multi-level security

◮ Multi Level Security (MLS) systems originated in

the military. A security level is a label for subjects

and objects, to describe a policy.

◮ Security levels are ordered:

unclassified ≤ confidential≤ secret ≤ topsecret.



Multi-level security

◮ Multi Level Security (MLS) systems originated in

the military. A security level is a label for subjects

and objects, to describe a policy.

◮ Security levels are ordered:

unclassified ≤ confidential≤ secret ≤ topsecret.

◮ Ordering can express policies like “no write-down”

which means that a high-level subject cannot write

down to a low-level object. (A user with confidential

clearance cannot write an unclassified file: it might

contain confidential information read earlier.)



Multi-level security

◮ Multi Level Security (MLS) systems originated in

the military. A security level is a label for subjects

and objects, to describe a policy.

◮ Security levels are ordered:

unclassified ≤ confidential≤ secret ≤ topsecret.

◮ Ordering can express policies like “no write-down”

which means that a high-level subject cannot write

down to a low-level object. (A user with confidential

clearance cannot write an unclassified file: it might

contain confidential information read earlier.)

◮ In practice, we need more flexibility. We may want

categorizations as well, for example, describing

departments or divisions in an organization. Then

individual levels may not be comparable. . .



Security lattices

◮ A lattice is a set L equipped with a partial ordering

≤ such every two elements a,b ∈ L has a least

upper bound a∨b and a greatest lower bound a∧b.

A finite lattice must have top and bottom elements.



Security lattices

◮ A lattice is a set L equipped with a partial ordering

≤ such every two elements a,b ∈ L has a least

upper bound a∨b and a greatest lower bound a∧b.

A finite lattice must have top and bottom elements.

◮ In security, if a ≤ b, we say that b dominates a.
◮ system low is the bottom, dominated by all others.
◮ system high is the top, which dominates all others.



Security lattices

◮ A lattice is a set L equipped with a partial ordering

≤ such every two elements a,b ∈ L has a least

upper bound a∨b and a greatest lower bound a∧b.

A finite lattice must have top and bottom elements.

◮ In security, if a ≤ b, we say that b dominates a.
◮ system low is the bottom, dominated by all others.
◮ system high is the top, which dominates all others.

◮ Lattices are useful for MLS policies because:



Security lattices

◮ A lattice is a set L equipped with a partial ordering

≤ such every two elements a,b ∈ L has a least

upper bound a∨b and a greatest lower bound a∧b.

A finite lattice must have top and bottom elements.

◮ In security, if a ≤ b, we say that b dominates a.
◮ system low is the bottom, dominated by all others.
◮ system high is the top, which dominates all others.

◮ Lattices are useful for MLS policies because:
◮ for two objects at levels a and b, there is a minimal
security level a∨ b for a subject to access both;



Security lattices

◮ A lattice is a set L equipped with a partial ordering

≤ such every two elements a,b ∈ L has a least

upper bound a∨b and a greatest lower bound a∧b.

A finite lattice must have top and bottom elements.

◮ In security, if a ≤ b, we say that b dominates a.
◮ system low is the bottom, dominated by all others.
◮ system high is the top, which dominates all others.

◮ Lattices are useful for MLS policies because:
◮ for two objects at levels a and b, there is a minimal
security level a∨ b for a subject to access both;

◮ for two subjects at levels a and b, there is a
maximal security level a∧ b for an object which
must be readable by both.



A Lattice Construction [Gollmann]

◮ take a set of classifications H and linear ordering ≤H

◮ take a set C of categories; compartments are subsets of C

◮ security levels are pairs (h, c) with h ∈ H and c ⊆ C

◮ ordering (h1, c1) ≤ (h2, c2) ⇐⇒ h1 ≤ h2, c1 ⊆ c2 gives a lattice.

private,{personnel,engineering}

private,{personnel} private,{engineering}

private,{}

public,{personnel,engineering}

public,{personnel} public,{engineering}

public,{}



Outline

Access and information flow

Access control mechanisms

Multi-level security

The BLP security model

Summary



Bell-LaPadula Model (BLP)

◮ BLP (1973) is state machine model for

confidentiality.



Bell-LaPadula Model (BLP)

◮ BLP (1973) is state machine model for

confidentiality.

◮ Permissions use an AC matrix and security levels.

The security policy prevents information flowing

from a high level to a lower level.



Bell-LaPadula Model (BLP)

◮ BLP (1973) is state machine model for

confidentiality.

◮ Permissions use an AC matrix and security levels.

The security policy prevents information flowing

from a high level to a lower level.

◮ Assume subjects S, objects O, accesses A as before.



Bell-LaPadula Model (BLP)

◮ BLP (1973) is state machine model for

confidentiality.

◮ Permissions use an AC matrix and security levels.

The security policy prevents information flowing

from a high level to a lower level.

◮ Assume subjects S, objects O, accesses A as before.

◮ A set L of security levels, with a partial ordering ≤.



Bell-LaPadula Model (BLP)

◮ BLP (1973) is state machine model for

confidentiality.

◮ Permissions use an AC matrix and security levels.

The security policy prevents information flowing

from a high level to a lower level.

◮ Assume subjects S, objects O, accesses A as before.

◮ A set L of security levels, with a partial ordering ≤.

◮ The state set B×M×F captures the current
permissions and subjects accessing objects. It has
three parts:



Bell-LaPadula Model (BLP)

◮ BLP (1973) is state machine model for

confidentiality.

◮ Permissions use an AC matrix and security levels.

The security policy prevents information flowing

from a high level to a lower level.

◮ Assume subjects S, objects O, accesses A as before.

◮ A set L of security levels, with a partial ordering ≤.

◮ The state set B×M×F captures the current
permissions and subjects accessing objects. It has
three parts:
◮ B possible current accesses



Bell-LaPadula Model (BLP)

◮ BLP (1973) is state machine model for

confidentiality.

◮ Permissions use an AC matrix and security levels.

The security policy prevents information flowing

from a high level to a lower level.

◮ Assume subjects S, objects O, accesses A as before.

◮ A set L of security levels, with a partial ordering ≤.

◮ The state set B×M×F captures the current
permissions and subjects accessing objects. It has
three parts:
◮ B possible current accesses
◮ M permissions matrices



Bell-LaPadula Model (BLP)

◮ BLP (1973) is state machine model for

confidentiality.

◮ Permissions use an AC matrix and security levels.

The security policy prevents information flowing

from a high level to a lower level.

◮ Assume subjects S, objects O, accesses A as before.

◮ A set L of security levels, with a partial ordering ≤.

◮ The state set B×M×F captures the current
permissions and subjects accessing objects. It has
three parts:
◮ B possible current accesses
◮ M permissions matrices
◮ F security level assignments



Bell-LaPadula Model (BLP)

◮ BLP (1973) is state machine model for

confidentiality.

◮ Permissions use an AC matrix and security levels.

The security policy prevents information flowing

from a high level to a lower level.

◮ Assume subjects S, objects O, accesses A as before.

◮ A set L of security levels, with a partial ordering ≤.

◮ The state set B×M×F captures the current
permissions and subjects accessing objects. It has
three parts:
◮ B possible current accesses
◮ M permissions matrices
◮ F security level assignments

◮ A BLP state is a triple (b,M, f ).



BLP state set

◮ B = P(S×O× A) is the set of all possible current

accesses.

An element b ∈ B is a set of tuples (s, o, a) meaning

s is performing operation a on an object o.



BLP state set

◮ B = P(S×O× A) is the set of all possible current

accesses.

An element b ∈ B is a set of tuples (s, o, a) meaning

s is performing operation a on an object o.

◮ M is the set of permission matrices

M = (Mso)s∈S,o∈O.



BLP state set

◮ B = P(S×O× A) is the set of all possible current

accesses.

An element b ∈ B is a set of tuples (s, o, a) meaning

s is performing operation a on an object o.

◮ M is the set of permission matrices

M = (Mso)s∈S,o∈O.

◮ F ⊂ LS × LS × LO is the set of security level

assignments.
An element f ∈ F is a triple (fS, fC, fO) where



BLP state set

◮ B = P(S×O× A) is the set of all possible current

accesses.

An element b ∈ B is a set of tuples (s, o, a) meaning

s is performing operation a on an object o.

◮ M is the set of permission matrices

M = (Mso)s∈S,o∈O.

◮ F ⊂ LS × LS × LO is the set of security level

assignments.
An element f ∈ F is a triple (fS, fC, fO) where
◮ fS : S→ L gives the maximal security level each
subject can have;



BLP state set

◮ B = P(S×O× A) is the set of all possible current

accesses.

An element b ∈ B is a set of tuples (s, o, a) meaning

s is performing operation a on an object o.

◮ M is the set of permission matrices

M = (Mso)s∈S,o∈O.

◮ F ⊂ LS × LS × LO is the set of security level

assignments.
An element f ∈ F is a triple (fS, fC, fO) where
◮ fS : S→ L gives the maximal security level each
subject can have;

◮ fC : S→ L gives the current security level of each
subject (st fC ≤ fS), and



BLP state set

◮ B = P(S×O× A) is the set of all possible current

accesses.

An element b ∈ B is a set of tuples (s, o, a) meaning

s is performing operation a on an object o.

◮ M is the set of permission matrices

M = (Mso)s∈S,o∈O.

◮ F ⊂ LS × LS × LO is the set of security level

assignments.
An element f ∈ F is a triple (fS, fC, fO) where
◮ fS : S→ L gives the maximal security level each
subject can have;

◮ fC : S→ L gives the current security level of each
subject (st fC ≤ fS), and

◮ fO : O→ L gives the classification of all objects.



BLP Mandatory Access Control Policy

Consider a state (b,M, f ), where b is the set of current

accesses.



BLP Mandatory Access Control Policy

Consider a state (b,M, f ), where b is the set of current

accesses.

Simple security property

The ss-property states for each access (s, o, a) ∈ b
where a ∈ {read,write}, then fO(o) ≤ fS(s) (no read-up).

Star property

The ∗-property states for each access (s, o, a) ∈ b
where a ∈ {append,write}, then fC(s) ≤ fO(o) (no
write-down) and moreover, we must have fO(o′) ≤ fO(o)
for all o′ with (s, o′, a′) ∈ b and a′ ∈ {read,write} (o

must dominate any other object s can read).



BLP Mandatory Access Control Policy

Consider a state (b,M, f ), where b is the set of current

accesses.

Simple security property

The ss-property states for each access (s, o, a) ∈ b
where a ∈ {read,write}, then fO(o) ≤ fS(s) (no read-up).

Star property

The ∗-property states for each access (s, o, a) ∈ b
where a ∈ {append,write}, then fC(s) ≤ fO(o) (no
write-down) and moreover, we must have fO(o′) ≤ fO(o)
for all o′ with (s, o′, a′) ∈ b and a′ ∈ {read,write} (o

must dominate any other object s can read).

Together these form the mandatory access control

policy for BLP.



BLP Discretionary Control and Security

The access control matrix M allows DAC as well.

Discretionary security property

The ds-property: for each access (s, o, a) ∈ b, we have

that a ∈ Mso (discretionary access controls are obeyed).



BLP Discretionary Control and Security

The access control matrix M allows DAC as well.

Discretionary security property

The ds-property: for each access (s, o, a) ∈ b, we have

that a ∈ Mso (discretionary access controls are obeyed).

◮ Definition of Security: The state (b,M, f ) is
secure if the three properties above are satisfied.

Notice that BLP’s notion of security is entirely captured

in the current state.



Current clearance level
◮ Unfortunately, the ∗-property means a high-level

subject cannot send messages to a low-level

subject. This is unrealistic!



Current clearance level
◮ Unfortunately, the ∗-property means a high-level

subject cannot send messages to a low-level

subject. This is unrealistic!
◮ There are two ways out:



Current clearance level
◮ Unfortunately, the ∗-property means a high-level

subject cannot send messages to a low-level

subject. This is unrealistic!
◮ There are two ways out:

1. temporarily downgrade a high-level subject, which
is why the model includes the current clearance
level setting fC, or



Current clearance level
◮ Unfortunately, the ∗-property means a high-level

subject cannot send messages to a low-level

subject. This is unrealistic!
◮ There are two ways out:

1. temporarily downgrade a high-level subject, which
is why the model includes the current clearance
level setting fC, or

2. identify a set of trusted subjects allowed to
violate the ∗-property.



Current clearance level
◮ Unfortunately, the ∗-property means a high-level

subject cannot send messages to a low-level

subject. This is unrealistic!
◮ There are two ways out:

1. temporarily downgrade a high-level subject, which
is why the model includes the current clearance
level setting fC, or

2. identify a set of trusted subjects allowed to
violate the ∗-property.

◮ Approach 1 works because the current state

describes exactly what each subject knows. So if a

subject (e.g. a process) is downgraded, it cannot

access higher-level material, so may safely write at

any lower level than its maximum.



Current clearance level
◮ Unfortunately, the ∗-property means a high-level

subject cannot send messages to a low-level

subject. This is unrealistic!
◮ There are two ways out:

1. temporarily downgrade a high-level subject, which
is why the model includes the current clearance
level setting fC, or

2. identify a set of trusted subjects allowed to
violate the ∗-property.

◮ Approach 1 works because the current state

describes exactly what each subject knows. So if a

subject (e.g. a process) is downgraded, it cannot

access higher-level material, so may safely write at

any lower level than its maximum.

◮ When subjects are people with high-level

clearances, approach 2 works: we trust someone to

violate the property in the model, e.g., by

publishing part of a secret document.



Basic security theorem

◮ A transition from state v1 to v2 is secure simply if

both states v1 and v2 are secure.



Basic security theorem

◮ A transition from state v1 to v2 is secure simply if

both states v1 and v2 are secure.

◮ This leads to a rather simple and general theorem:



Basic security theorem

◮ A transition from state v1 to v2 is secure simply if

both states v1 and v2 are secure.

◮ This leads to a rather simple and general theorem:

Basic security theorem

If all state transitions in a system are secure and the

initial state of the system is secure, then every

subsequent state is also secure.



Basic security theorem

◮ A transition from state v1 to v2 is secure simply if

both states v1 and v2 are secure.

◮ This leads to a rather simple and general theorem:

Basic security theorem

If all state transitions in a system are secure and the

initial state of the system is secure, then every

subsequent state is also secure.



Basic security theorem

◮ A transition from state v1 to v2 is secure simply if

both states v1 and v2 are secure.

◮ This leads to a rather simple and general theorem:

Basic security theorem

If all state transitions in a system are secure and the

initial state of the system is secure, then every

subsequent state is also secure.

(NB: this follows immediately by induction, it has

nothing to do with the properties of BLP!)

◮ The point: we can reduce checking the system for

all possible inputs to checking that each kind of

possible state transition preserves security. Of

course, to do this we need a concrete instance of

the model which describes possible transitions.



Outline

Access and information flow

Access control mechanisms

Multi-level security

The BLP security model

Summary



Summary

◮ A security model is a framework for formalising

security policies

◮ Access control enforcement uses a reference

monitor

◮ Operations have access modes used to define

properties

◮ Bell-LaPadula (BLP) access control model:
◮ For confidentiality
◮ Discretionary (DAC) and mandatory (MAC) access
◮ MAC via multi-level security lattice
◮ ss-property: no read-up
◮ ∗-property: no write down, direct or indirect
◮ DAC via access control matrix (ds-property)



References

See Chapters 5, 11 (also 7 and 8) of Gollmann, and

Parts 2–3 of Bishop.

beamericonbookRoss Anderson. Security Engineering: A Guide to

Building Dependable Distributed Systems..

Wiley & Sons, 2nd Edition, 2008.

beamericonbookMatt Bishop. Computer Security: Art and Science.

Addison-Wesley, 2003.

beamericonbookDieter Gollmann. Computer Security.

John Wiley & Sons, 3rd Edition, 2011.

Recommended Reading

Chapters 5 and 11 of Gollmann.

Chapters 4 and 8 of Anderson.


	Outline
	Access and information flow
	Access control mechanisms
	Multi-level security
	The BLP security model
	Summary

