Cryptography IV: Asymmetric Ciphers Computer Security Lecture 7

David Aspinall

School of Informatics University of Edinburgh

31st January 2011

Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary

Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary

History

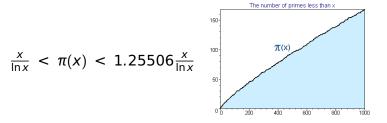
- Originally attributed to Diffie and Hellman in 1975, but later revealed in British classified work of James Ellis in 1971
- Basic idea: alter traditional symmetry of cryptographic protocols to convey additional info in a public key. The sender uses the public key to convey a secret message to the recipient, without requiring a secure channel to share key information.
- Originally presented as a means of encrypting messages. In practice, public key algorithms are used to exchange symmetric keys
 - Public keys are key encrypting keys
 - Symmetric keys are data encrypting keys
- Public keys are also used to provide integrity through digital signatures (later lecture)

Prime numbers

▶ A natural number $p \ge 2$ is *prime* if 1 and p are its only positive divisors.

Prime numbers

- ▶ A natural number $p \ge 2$ is *prime* if 1 and p are its only positive divisors.
- ► For $x \ge 17$, then $\pi(x)$, the number of primes less than or equal to x, is approximated by:



Prime numbers

- ▶ A natural number $p \ge 2$ is *prime* if 1 and p are its only positive divisors.
- ► For $x \ge 17$, then $\pi(x)$, the number of primes less than or equal to x, is approximated by:

$$\frac{x}{\ln x} < \pi(x) < 1.25506 \frac{x}{\ln x}$$

Fundamental theorem of arithmetic

Every natural number $n \ge 2$ has a unique factorization as a product of prime powers: $p_1^{e_1} \cdots p_n^{e_n}$ for distinct primes p_i and positive e_i .

► Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.

- ► Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.
- ► The Euler totient function $\phi(n)$ is the number of elements of $\{1, ..., n-1\}$ relatively prime to n.

- ► Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.
- ▶ The Euler totient function $\phi(n)$ is the number of elements of $\{1, ..., n-1\}$ relatively prime to n.
- Given the factorisation of n, it's easy to compute $\phi(n)$.

- ► Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.
- ► The Euler totient function $\phi(n)$ is the number of elements of $\{1, ..., n-1\}$ relatively prime to n.
- Given the factorisation of n, it's easy to compute $\phi(n)$.
 - ▶ For prime n, $\phi(n) = n 1$

- ► Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.
- ► The Euler totient function $\phi(n)$ is the number of elements of $\{1, ..., n-1\}$ relatively prime to n.
- Given the factorisation of n, it's easy to compute $\phi(n)$.
 - ▶ For prime n, $\phi(n) = n 1$
 - For distinct primes p, q, $\phi(pq) = (p-1)(q-1)$.

- ► Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.
- ► The Euler totient function $\phi(n)$ is the number of elements of $\{1, ..., n-1\}$ relatively prime to n.
- Given the factorisation of n, it's easy to compute $\phi(n)$.
 - ▶ For prime n, $\phi(n) = n 1$
 - For distinct primes p, q, $\phi(pq) = (p-1)(q-1)$.
- ▶ An integer n is said to be B-smooth wrt a positive bound B, if all its prime factors are $\leq B$.

- ► Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.
- ► The Euler totient function $\phi(n)$ is the number of elements of $\{1, ..., n-1\}$ relatively prime to n.
- Given the factorisation of n, it's easy to compute $\phi(n)$.
 - ▶ For prime n, $\phi(n) = n 1$
 - For distinct primes p, q, $\phi(pq) = (p-1)(q-1)$.
- ▶ An integer n is said to be B-smooth wrt a positive bound B, if all its prime factors are $\leq B$.
 - ▶ We say just "n is smooth" when $B \ll n$.

- ► Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.
- ► The Euler totient function $\phi(n)$ is the number of elements of $\{1, ..., n-1\}$ relatively prime to n.
- Given the factorisation of n, it's easy to compute $\phi(n)$.
 - ▶ For prime n, $\phi(n) = n 1$
 - For distinct primes p, q, $\phi(pq) = (p-1)(q-1)$.
- ▶ An integer n is said to be B-smooth wrt a positive bound B, if all its prime factors are $\leq B$.
 - ▶ We say just "n is smooth" when $B \ll n$.
 - Smooth numbers are easy to factor, leading to efficient factoring algorithms for large composites containing primes p with for which p-1 is smooth (Pollard's P-1 **method**).

Let *n* be a positive integer. The set

$$\mathbf{Z}_n = \{0, \ldots, n-1\}$$

contains (equivalence classes of) integers mod n.

Let *n* be a positive integer. The set

$$Z_n = \{0, \ldots, n-1\}$$

contains (equivalence classes of) integers mod n.

▶ Let $a \in \mathbf{Z}_n$. The **multiplicative inverse** of a modulo n is the unique $x \in \mathbf{Z}_n$ such that

$$ax \equiv 1 \pmod{n}$$
.

Such an x exists iff gcd(a, n) = 1.

Let *n* be a positive integer. The set

$$Z_n = \{0, \ldots, n-1\}$$

contains (equivalence classes of) integers mod n.

▶ Let $a \in \mathbf{Z}_n$. The **multiplicative inverse** of a modulo n is the unique $x \in \mathbf{Z}_n$ such that

$$ax \equiv 1 \pmod{n}$$
.

Such an x exists iff gcd(a, n) = 1.

$$\mathbf{Z}_{n}^{*} = \{a \in \mathbf{Z}_{n} \mid \gcd(a, n) = 1\}.$$

Let *n* be a positive integer. The set

$$Z_n = \{0, \ldots, n-1\}$$

contains (equivalence classes of) integers mod n.

▶ Let $a \in \mathbf{Z}_n$. The **multiplicative inverse** of a modulo n is the unique $x \in \mathbf{Z}_n$ such that

$$ax \equiv 1 \pmod{n}$$
.

Such an x exists iff gcd(a, n) = 1.

▶ We can define a multiplicative group \mathbf{Z}_n^* by

$$\mathbf{Z}_{n}^{*} = \{ a \in \mathbf{Z}_{n} \mid \gcd(a, n) = 1 \}.$$

Facts:

▶ Let *n* be a positive integer. The set

$$\mathbf{Z}_n = \{0, \ldots, n-1\}$$

contains (equivalence classes of) integers mod n.

▶ Let $a \in \mathbf{Z}_n$. The **multiplicative inverse** of a modulo n is the unique $x \in \mathbf{Z}_n$ such that

$$ax \equiv 1 \pmod{n}$$
.

Such an x exists iff gcd(a, n) = 1.

$$\mathbf{Z}_{n}^{*} = \{ a \in \mathbf{Z}_{n} \mid \gcd(a, n) = 1 \}.$$

- Facts:
 - $ightharpoonup \mathbf{Z}_n^*$ is closed under multiplication

Let *n* be a positive integer. The set

$$\mathbf{Z}_n = \{0, \ldots, n-1\}$$

contains (equivalence classes of) integers mod n.

▶ Let $a \in \mathbf{Z}_n$. The **multiplicative inverse** of a modulo n is the unique $x \in \mathbf{Z}_n$ such that

$$ax \equiv 1 \pmod{n}$$
.

Such an x exists iff gcd(a, n) = 1.

$$\mathbf{Z}_{n}^{*} = \{ a \in \mathbf{Z}_{n} \mid \gcd(a, n) = 1 \}.$$

- Facts:
 - Z_n^{*} is closed under multiplication
 - $|\mathbf{Z}_{n}^{*}| = \phi(n)$

Let *n* be a positive integer. The set

$$\mathbf{Z}_n = \{0, \ldots, n-1\}$$

contains (equivalence classes of) integers mod n.

▶ Let $a \in \mathbf{Z}_n$. The **multiplicative inverse** of a modulo n is the unique $x \in \mathbf{Z}_n$ such that

$$ax \equiv 1 \pmod{n}$$
.

Such an x exists iff gcd(a, n) = 1.

$$\mathbf{Z}_{n}^{*} = \{ a \in \mathbf{Z}_{n} \mid \gcd(a, n) = 1 \}.$$

- ► Facts:
 - Z_n^{*} is closed under multiplication
 - ► $|\mathbf{Z}_n^*| = \phi(n)$ ► For prime n, $\mathbf{Z}_n^* = \{1, ..., n-1\}$.

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

If gcd(a, n) = 1, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's little theorem is used in several places, e.g. a simple probabilistic primality test:

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

- Fermat's little theorem is used in several places, e.g. a simple probabilistic primality test:
 - ▶ repeatedly test a^{p-1} mod p for random a

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

- Fermat's little theorem is used in several places, e.g. a simple probabilistic primality test:
 - ▶ repeatedly test $a^{p-1} \mod p$ for random a
 - Miller-Rabin improves this (Carmichael numbers fail)

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

- Fermat's little theorem is used in several places, e.g. a simple probabilistic primality test:
 - repeatedly test $a^{p-1} \mod p$ for random a
 - Miller-Rabin improves this (Carmichael numbers fail)
- Euler's theorem allows reduction of large powers.

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

- Fermat's little theorem is used in several places, e.g. a simple probabilistic primality test:
 - repeatedly test $a^{p-1} \mod p$ for random a
 - Miller-Rabin improves this (Carmichael numbers fail)
- Euler's theorem allows reduction of large powers.
 - ► $5^{79} \mod 6 = (5^2 * 5^2)^{19} * 5^3 = 1^{19} * 125 \mod 6 = 5$

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

- Fermat's little theorem is used in several places, e.g. a simple probabilistic primality test:
 - repeatedly test $a^{p-1} \mod p$ for random a
 - Miller-Rabin improves this (Carmichael numbers fail)
- Euler's theorem allows reduction of large powers.
 - ► $5^{79} \mod 6 = (5^2 * 5^2)^{19} * 5^3 = 1^{19} * 125 \mod 6 = 5$
 - ► Generally: if $x \equiv y \pmod{\phi(n)}$, then $a^x \equiv a^y \pmod{n}$.

▶ Let $a \in \mathbf{Z}_n^*$.

The *order* of a is the least t > 0 st $a^t \equiv 1 \pmod{n}$.

- ▶ Let $a \in \mathbf{Z}_n^*$. The *order* of a is the least t > 0 st $a^t \equiv 1 \pmod{n}$.
- ▶ If $g \ge 2$ has order $\phi(n)$, then \mathbf{Z}_n^* is **cyclic** and g is a **generator** (aka *primitive root*) of \mathbf{Z}_n^* .

- ► Let $a \in \mathbf{Z}_n^*$. The *order* of a is the least t > 0 st $a^t \equiv 1 \pmod{n}$.
- ▶ If $g \ge 2$ has order $\phi(n)$, then \mathbf{Z}_n^* is **cyclic** and g is a **generator** (aka *primitive root*) of \mathbf{Z}_n^* .
- ▶ \mathbf{Z}_n^* is cyclic iff $n = 2, 4, p^k, 2p^k$ for odd primes p.

- ▶ Let $a \in \mathbf{Z}_n^*$. The *order* of a is the least t > 0 st $a^t \equiv 1 \pmod{n}$.
- ▶ If $g \ge 2$ has order $\phi(n)$, then \mathbf{Z}_n^* is **cyclic** and g is a **generator** (aka *primitive root*) of \mathbf{Z}_n^* .
- ▶ \mathbf{Z}_n^* is cyclic iff $n = 2, 4, p^k, 2p^k$ for odd primes p.
- ► The **discrete logarithm** of *b* wrt *g* is the *x* st $g^x \equiv b \pmod{n}$.

- ► Let $a \in \mathbf{Z}_n^*$. The *order* of a is the least t > 0 st $a^t \equiv 1 \pmod{n}$.
- ▶ If $g \ge 2$ has order $\phi(n)$, then \mathbf{Z}_n^* is **cyclic** and g is a **generator** (aka *primitive root*) of \mathbf{Z}_n^* .
- ▶ \mathbf{Z}_{n}^{*} is cyclic iff $n = 2, 4, p^{k}, 2p^{k}$ for odd primes p.
- ► The **discrete logarithm** of *b* wrt *g* is the *x* st $g^x \equiv b \pmod{n}$.
- ► There is an efficient algorithm for computing discrete logs in \mathbf{Z}_{p}^{*} if p-1 has smooth factors.

Example: \mathbf{Z}_5^*

► Here is the multiplication table for \mathbf{Z}_{5}^{*} , showing xy (mod 5).

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	1 2 3 4	3	2	1

Example: **Z**₅*

► Here is the multiplication table for \mathbf{Z}_{5}^{*} , showing xy (mod 5).

► |**Z**₅*|

$$|\mathbf{Z}_{5}^{*}| = \phi(5) = 4$$

Example: **Z**₅*

- ► $|\mathbf{Z}_5^*| = \phi(5) = 4$ ► Inverses: 2^{-1}

- $|\mathbf{Z}_{5}^{*}| = \phi(5) = 4$
- Inverses: $2^{-1} = 3$, 3^{-1}

- $|\mathbf{Z}_{5}^{*}| = \phi(5) = 4$
- ► Inverses: $2^{-1} = 3$, $3^{-1} = 2$, 4^{-1}

- $|\mathbf{Z}_{5}^{*}| = \phi(5) = 4$
- ► Inverses: $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$.

- $|\mathbf{Z}_{5}^{*}| = \phi(5) = 4$
- ► Inverses: $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$.
- ► Notice $2^4 = 2 * 2 * 2 * 2 = 1$, also $3^4 = 4^4 = 1$.

- $|\mathbf{Z}_{5}^{*}| = \phi(5) = 4$
- ► Inverses: $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$.
- ▶ Notice $2^4 = 2 * 2 * 2 * 2 = 1$, also $3^4 = 4^4 = 1$.
- Generators are:

- $|\mathbf{Z}_{5}^{*}| = \phi(5) = 4$
- ► Inverses: $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$.
- ► Notice $2^4 = 2 * 2 * 2 * 2 = 1$, also $3^4 = 4^4 = 1$.
- Generators are: 2, 3, 4.

- $|\mathbf{Z}_{5}^{*}| = \phi(5) = 4$
- ► Inverses: $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$.
- ▶ Notice $2^4 = 2 * 2 * 2 * 2 = 1$, also $3^4 = 4^4 = 1$.
- Generators are: 2, 3, 4.
- ▶ In \mathbf{Z}_{5}^{*} , the discrete log of 4 for base 3 is

- $|\mathbf{Z}_{5}^{*}| = \phi(5) = 4$
- ▶ Inverses: $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$.
- ▶ Notice $2^4 = 2 * 2 * 2 * 2 = 1$, also $3^4 = 4^4 = 1$.
- Generators are: 2, 3, 4.
- In Z₅*, the discrete log of 4 for base 3 is 2

	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
		11						
14	14	13	11	8	7	4	2	1

- $|\mathbf{Z}_{15}^*| = \phi(15) = (3-1) * (5-1) = 8.$
- This group is not cyclic.
 Exercise: find orders of each element.

Outline

Background

RSA

Diffie-Hellman

ElGama

Summary

▶ A key-pair is based on product of two large, distinct, random secret primes, n=pq with p and q roughly the same size, together with a random integer e with $1 < e < \phi$ and $gcd(e, \phi) = 1$, where

$$\phi = \phi(n) = (p-1)(q-1).$$

Public key is (n, e) and n is called the *modulus*.

▶ A key-pair is based on product of two large, distinct, random secret primes, n=pq with p and q roughly the same size, together with a random integer e with $1 < e < \phi$ and $gcd(e, \phi) = 1$, where

$$\phi = \phi(n) = (p-1)(q-1).$$

Public key is (n, e) and n is called the *modulus*.

▶ Private key is d, unique s.t. $ed \equiv 1 \pmod{\phi}$.

▶ A key-pair is based on product of two large, distinct, random secret primes, n=pq with p and q roughly the same size, together with a random integer e with $1 < e < \phi$ and $gcd(e, \phi) = 1$, where

$$\phi = \phi(n) = (p-1)(q-1).$$

Public key is (n, e) and n is called the *modulus*.

- ▶ Private key is d, unique s.t. $ed \equiv 1 \pmod{\phi}$.
- ▶ Message and cipher space $\mathcal{M} = \mathcal{C} = \{0, ..., n-1\}$.

▶ A key-pair is based on product of two large, distinct, random secret primes, n=pq with p and q roughly the same size, together with a random integer e with $1 < e < \phi$ and $gcd(e, \phi) = 1$, where

$$\phi = \phi(n) = (p-1)(q-1).$$

Public key is (n, e) and n is called the *modulus*.

- ▶ Private key is d, unique s.t. $ed \equiv 1 \pmod{\phi}$.
- ▶ Message and cipher space $\mathcal{M} = \mathcal{C} = \{0, ..., n-1\}$.
- Encryption is exponentiation with public key e.
 Decryption is exponentiation with private key d.

$$E_{(n,e)}(m) = m^e \mod n$$
$$D_d(c) = c^d \mod n$$

▶ A key-pair is based on product of two large, distinct, random secret primes, n=pq with p and q roughly the same size, together with a random integer e with $1 < e < \phi$ and $gcd(e, \phi) = 1$, where

$$\phi = \phi(n) = (p-1)(q-1).$$

Public key is (n, e) and n is called the *modulus*.

- ▶ Private key is d, unique s.t. $ed \equiv 1 \pmod{\phi}$.
- ▶ Message and cipher space $\mathcal{M} = \mathcal{C} = \{0, ..., n-1\}$.
- Encryption is exponentiation with public key e.
 Decryption is exponentiation with private key d.

$$E_{(n,e)}(m) = m^e \mod n$$

$$D_d(c) = c^d \mod n$$

▶ Decryption works, since for some k, $ed = 1 + k\phi$ and

$$(m^e)^d \equiv m^{ed} \equiv m^{1+k\phi} \equiv mm^{k\phi} \equiv m \pmod{n}$$

using Fermat's theorem. (Exercise: fill details in).

Recall that RSA is an example of a reversible public-key encryption scheme. This is because e and d are symmetric in the definition. RSA digital signatures make use of this.

- Recall that RSA is an example of a reversible public-key encryption scheme. This is because e and d are symmetric in the definition. RSA digital signatures make use of this.
- RSA is often used with randomization (e.g., salting with random appendix) to prevent chosen-plaintext and other attacks.

- Recall that RSA is an example of a reversible public-key encryption scheme. This is because e and d are symmetric in the definition. RSA digital signatures make use of this.
- RSA is often used with randomization (e.g., salting with random appendix) to prevent chosen-plaintext and other attacks.
- It's the most popular and cryptanalysed public-key algorithm. Largest modulus factored in the (now defunct) RSA challenge is 768 bits (232 digits), factored using the Number Field Sieve (NFS) on 12 December 2009.

- Recall that RSA is an example of a reversible public-key encryption scheme. This is because e and d are symmetric in the definition. RSA digital signatures make use of this.
- RSA is often used with randomization (e.g., salting with random appendix) to prevent chosen-plaintext and other attacks.
- It's the most popular and cryptanalysed public-key algorithm. Largest modulus factored in the (now defunct) RSA challenge is 768 bits (232 digits), factored using the Number Field Sieve (NFS) on 12 December 2009.
 - It took the equivalent of 2000 years of computing on a single core 2.2GHz AMD Opteron. On the order of 2⁶⁷ instructions were carried out.

- Recall that RSA is an example of a reversible public-key encryption scheme. This is because e and d are symmetric in the definition. RSA digital signatures make use of this.
- RSA is often used with randomization (e.g., salting with random appendix) to prevent chosen-plaintext and other attacks.
- ▶ It's the most popular and cryptanalysed public-key algorithm. Largest modulus factored in the (now defunct) RSA challenge is 768 bits (232 digits), factored using the Number Field Sieve (NFS) on 12 December 2009.
 - It took the equivalent of 2000 years of computing on a single core 2.2GHz AMD Opteron. On the order of 2⁶⁷ instructions were carried out.
 - Factoring a 1024 bit modulus would take about 1000 times more work (and would be achievable in less than 5 years from now).

RSA Remarks . . .

- In practice, RSA is used to encrypt symmetric keys, not messages
- Like most public key algorithms, the RSA key size is larger, and the computations are more expensive (compared to AES, for example)
- This is believed to be a necessary result of the key being publicly available
- With regard to attack complexity based upon an n-bit key
 - A worst-case attack algorithm on a symmetric cipher would take $O(2^n)$ work (exponential).
 - A worst-case attack algorithm for RSA is dependent upon the complexity of factoring, and thus would take $O(e^{o(n)})$ (sub-exponential)

FACTORING Integer factorization. Given positive n, find its prime factorization, i.e., distinct p_i such that $n = p_1^{e_1} \cdots p_n^{e_n}$ for some $e_i \ge 1$.

FACTORING Integer factorization. Given positive n, find its prime factorization, i.e., distinct p_i such that $n = p_1^{e_1} \cdots p_n^{e_n}$ for some $e_i \ge 1$.

SQRROOT Given a such that $a \equiv x^2 \pmod{n}$, find x.

FACTORING Integer factorization. Given positive n, find its prime factorization, i.e., distinct p_i such that $n = p_1^{e_1} \cdots p_n^{e_n}$ for some $e_i \ge 1$.

SQRROOT Given a such that $a \equiv x^2 \pmod{n}$, find x.

RSAP RSA inversion. Given n such that n = pq for some odd primes $p \neq q$, and e such that gcd(e, (p-1), (q-1)) = 1, and e, find e such that e is e (mod e).

FACTORING Integer factorization. Given positive n, find its prime factorization, i.e., distinct p_i such that $n = p_1^{e_1} \cdots p_n^{e_n}$ for some $e_i \ge 1$.

SQRROOT Given a such that $a \equiv x^2 \pmod{n}$, find x.

RSAP RSA inversion. Given n such that n = pq for some odd primes $p \neq q$, and e such that gcd(e, (p-1), (q-1)) = 1, and e, find e such that e is e (mod e).

Note: SQRROOT = $_P$ FACTORING and RSAP \leq_P FACTORING

- ▶ $A \leq_P B$ means there is a polynomial time (efficient) reduction from problem A to problem B.
- ▶ $A =_P B$ means $A \leq_P B$ and $B \leq_P A$
- So: RSAP is no harder than FACTORING. Is it easier? An open question.

Outline

Background

RSA

Diffie-Hellman

ElGama

Summary

DLP Discrete logarithm problem. Given prime p, a generator g of \mathbf{Z}_p^* , and an element $a \in \mathbf{Z}_p^*$, find the integer x, with $0 \le x \le p-2$ such that $g^x \equiv a \pmod{p}$.

- DLP Discrete logarithm problem. Given prime p, a generator g of \mathbf{Z}_p^* , and an element $a \in \mathbf{Z}_p^*$, find the integer x, with $0 \le x \le p-2$ such that $g^x \equiv a \pmod{p}$.
- DHP Diffie-Hellman problem. Given prime p, a generator g of \mathbf{Z}_p^* , and elements $g^a \mod p$ and $g^b \mod p$, find $g^{ab} \mod p$.

- DLP Discrete logarithm problem. Given prime p, a generator g of \mathbf{Z}_p^* , and an element $a \in \mathbf{Z}_p^*$, find the integer x, with $0 \le x \le p-2$ such that $g^x \equiv a \pmod{p}$.
- DHP Diffie-Hellman problem. Given prime p, a generator g of \mathbf{Z}_p^* , and elements $g^a \mod p$ and $g^b \mod p$, find $g^{ab} \mod p$.

Note: $DHP \leq_P DLP$. In some cases, $DHP =_P DLP$.

▶ Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of \mathbf{Z}_p^* .

▶ Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of \mathbf{Z}_p^* .

Message 1. $A \rightarrow B$: $g^x \mod p$ Message 2. $B \rightarrow A$: $g^y \mod p$

▶ Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of \mathbf{Z}_p^* .

```
Message 1. A \rightarrow B: g^x \mod p
Message 2. B \rightarrow A: g^y \mod p
```

▶ A chooses random x, $1 \le x , sends msg 1.$

▶ Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of \mathbf{Z}_p^* .

```
Message 1. A \rightarrow B: g^x \mod p
Message 2. B \rightarrow A: g^y \mod p
```

- ▶ A chooses random x, $1 \le x , sends msg 1.$
- ▶ B chooses random y, $1 \le y , sends msg 2.$

Diffie-Hellman key agreement

▶ Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of \mathbf{Z}_p^* .

```
Message 1. A \rightarrow B: g^x \mod p
Message 2. B \rightarrow A: g^y \mod p
```

- ▶ A chooses random x, $1 \le x , sends msg 1.$
- ▶ B chooses random y, $1 \le y , sends msg 2.$
- ▶ B receives g^{x} , computes shared key $K = (g^{x})^{y} \mod p$.

Diffie-Hellman key agreement

▶ Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of \mathbf{Z}_p^* .

```
Message 1. A \rightarrow B: g^x \mod p
Message 2. B \rightarrow A: g^y \mod p
```

- ▶ A chooses random x, $1 \le x , sends msg 1.$
- ▶ B chooses random y, $1 \le y , sends msg 2.$
- ▶ B receives g^{x} , computes shared key $K = (g^{x})^{y} \mod p$.
- A receives g^y , computes shared key $K = (g^y)^x \mod p$.

Diffie-Hellman key agreement

▶ Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of \mathbf{Z}_p^* .

```
Message 1. A \rightarrow B: g^x \mod p
Message 2. B \rightarrow A: g^y \mod p
```

- ▶ A chooses random x, $1 \le x , sends msg 1.$
- ▶ B chooses random y, $1 \le y , sends msg 2.$
- B receives g^x , computes shared key $K = (g^x)^y \mod p$.
- A receives g^y , computes shared key $K = (g^y)^x \mod p$.
- Security rests on intractability of DHP for p and g. Protocol is safe against passive adversaries, but not active ones.

Exercise: try some artificial examples with p = 11, g = 2. Show a MITM attack against the protocol.

Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary

▶ A key-pair is based on a large random prime p and generator g of \mathbf{Z}_p^* , and a random integer d. Public key: $(p, g, g^d \mod p)$, private key: d.

- A key-pair is based on a large random prime p and generator g of \mathbf{Z}_p^* , and a random integer d. Public key: $(p, g, g^d \mod p)$, private key: d.
- ▶ The message space $\mathcal{M} = \{0, ..., p-1\}$, and the encryption operation is given by selecting a random integer r and computing a pair:

$$E_{(p,g,g^d)}(m) = (e,c)$$
 where $e = g^r \mod p$
 $c = m(g^d)^r \mod p$.

- A key-pair is based on a large random prime p and generator g of \mathbf{Z}_p^* , and a random integer d. Public key: $(p, q, q^d \mod p)$, private key: d.
- ▶ The message space $\mathcal{M} = \{0, ..., p-1\}$, and the encryption operation is given by selecting a random integer r and computing a pair:

$$E_{(p,g,g^d)}(m) = (e,c)$$
 where $e = g^r \mod p$
 $c = m(g^d)^r \mod p$.

▶ Decryption takes an element of ciphertext $C = M \times M$, and computes:

$$D_{\mathbf{d}}(\mathbf{e}, \mathbf{c}) = \mathbf{e}^{-\mathbf{d}} \mathbf{c} \mod p$$
 where $\mathbf{e}^{-\mathbf{d}} = \mathbf{e}^{p-1-d} \mod p$.

- A key-pair is based on a large random prime p and generator g of \mathbf{Z}_p^* , and a random integer d. Public key: $(p, g, g^d \mod p)$, private key: d.
- ▶ The message space $\mathcal{M} = \{0, ..., p-1\}$, and the encryption operation is given by selecting a random integer r and computing a pair:

$$E_{(p,g,g^d)}(m) = (e,c)$$
 where $e = g^r \mod p$
 $c = m(g^d)^r \mod p$.

▶ Decryption takes an element of ciphertext $C = M \times M$, and computes:

$$D_d(e,c) = e^{-d} c \mod p$$
 where $e^{-d} = e^{p-1-d} \mod p$.

▶ Decryption works because $e^{-d} = g^{-dr}$, so

$$D_{\mathbf{d}}(\mathbf{e}, \mathbf{c}) \equiv g^{-\mathbf{d}r} m g^{\mathbf{d}r} \equiv m \pmod{p}.$$

- A key-pair is based on a large random prime p and generator g of \mathbf{Z}_p^* , and a random integer d. Public key: $(p, g, g^d \mod p)$, private key: d.
- ▶ The message space $\mathcal{M} = \{0, ..., p-1\}$, and the encryption operation is given by selecting a random integer r and computing a pair:

$$E_{(p,g,g^d)}(m) = (e,c)$$
 where $e = g^r \mod p$
 $c = m(g^d)^r \mod p$.

▶ Decryption takes an element of ciphertext $C = M \times M$, and computes:

$$D_{\mathbf{d}}(\mathbf{e}, \mathbf{c}) = \mathbf{e}^{-\mathbf{d}} \mathbf{c} \mod p$$
 where $\mathbf{e}^{-\mathbf{d}} = \mathbf{e}^{p-1-d} \mod p$.

▶ Decryption works because $e^{-d} = g^{-dr}$, so $D_d(e,c) \equiv g^{-dr} m g^{dr} \equiv m \pmod{p}$.

ElGamal is an example of a randomized encryption scheme, so no need to add salt. Security relies in intractability of DHP. Choosing different r for different messages is critical. Exercise: why?

- ElGamal is an example of a randomized encryption scheme, so no need to add salt. Security relies in intractability of DHP. Choosing different r for different messages is critical. Exercise: why?
- Efficiency:

- ElGamal is an example of a randomized encryption scheme, so no need to add salt. Security relies in intractability of DHP. Choosing different r for different messages is critical. Exercise: why?
- Efficiency:
 - ciphertext twice as long as plaintext

- ElGamal is an example of a randomized encryption scheme, so no need to add salt. Security relies in intractability of DHP. Choosing different r for different messages is critical. Exercise: why?
- Efficiency:
 - ciphertext twice as long as plaintext
 - encryption requires two modular exponentiations, which can be sped up by picking the random r with some additional structure (with care).

- ElGamal is an example of a randomized encryption scheme, so no need to add salt. Security relies in intractability of DHP. Choosing different r for different messages is critical. Exercise: why?
- Efficiency:
 - ciphertext twice as long as plaintext
 - encryption requires two modular exponentiations, which can be sped up by picking the random r with some additional structure (with care).
- ▶ The prime *p* and generator *g* can be fixed for the system, reducing the size of public keys. Then exponentiation can be speeded up by precomputation; however, so can the best-known algorithm for calculating discrete logarithms, so a larger modulus would be warranted.

- ElGamal is an example of a randomized encryption scheme, so no need to add salt. Security relies in intractability of DHP. Choosing different r for different messages is critical. Exercise: why?
- Efficiency:
 - ciphertext twice as long as plaintext
 - encryption requires two modular exponentiations, which can be sped up by picking the random r with some additional structure (with care).
- ▶ The prime *p* and generator *g* can be fixed for the system, reducing the size of public keys. Then exponentiation can be speeded up by precomputation; however, so can the best-known algorithm for calculating discrete logarithms, so a larger modulus would be warranted.
- ► The **security** of ElGamal encryption and signing is based on the intractability of the DHP for p. Several other conditions are required.

Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary

Summary: Current Public Key algorithms

- RSA, ElGamal already described.
- ► Elliptic curve schemes. Use ElGamal techniques. Have shorter keys for same amount of security.
- ▶ **Rabin** encryption. Based on SQRROOT problem.
- Probabilistic schemes, which achieve provable security based on Random Oracle Method (ROM) arguments.
- Cramer-Shoup. Extends ElGamal with use of hash functions in critical places to provide provable security without ROM. Less efficient than ElGamal: slower and ciphertext twice as long.

References

Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone, editors. Handbook of Applied Cryptography.
CRC Press Series on Discrete Mathematics and Its

Online version at

http://www.cacr.math.uwaterloo.ca/hac.

Nigel Smart. Cryptography: An Introduction. McGraw-Hill, 2003. Third edition online: http: //www.cs.bris.ac.uk/~nigel/Crypto_Book/

Recommended Reading

Chapter **11**, 12, 13 of Smart (3rd Ed).

Applications. CRC Press, 1997.