Cryptography IV: Asymmetric Ciphers Computer Security Lecture 9

Mike Just¹

School of Informatics University of Edinburgh

11th February 2010

¹Based on original lecture notes by David Aspinall

Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary

Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary

History

- Asymmetric or public-key cryptography
- Originally attributed to Diffie and Hellman in 1975, but later discovered in British classified work of James Ellis in 1971
- Basic idea involves altering traditional symmetry of cryptographic protocols to convey additional info in a *public key*. The message sender uses this public key to convey a secret message to the receipient, without requiring a secure channel to share key information.
- Traditionally presented as a means of encrypting messages. In practice today, public key algorithms are used to exchange symmetric keys
 - Public keys are key encrypting keys
 - Symmetric keys are data encryptingn keys
- Public keys also used to provide integrity through digital signatures (later lecture)

Prime numbers

A natural number p ≥ 2 is prime if 1 and p are its only positive divisors.

Prime numbers

- A natural number p ≥ 2 is prime if 1 and p are its only positive divisors.
- For $x \ge 17$, then $\pi(x)$, the number of primes less than or equal to x, is approximated by:

Prime numbers

- A natural number p ≥ 2 is prime if 1 and p are its only positive divisors.
- For $x \ge 17$, then $\pi(x)$, the number of primes less than or equal to x, is approximated by:

Fundamental theorem of arithmetic

Every natural number $n \ge 2$ has a unique factorization as a product of prime powers: $p_1^{e_1} \cdots p_n^{e_n}$ for distinct primes p_i and positive e_i .

Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.

- Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.
- The Euler totient function φ(n) is the number of elements of {1,..., n} relatively prime to n.

- Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.
- The Euler totient function φ(n) is the number of elements of {1,...,n} relatively prime to n.
- Given the factorisation of n, it's easy to compute φ(n).

- Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.
- The Euler totient function φ(n) is the number of elements of {1,...,n} relatively prime to n.
- Given the factorisation of n, it's easy to compute φ(n).

For prime n, $\phi(n) = n - 1$

- Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.
- The Euler totient function φ(n) is the number of elements of {1,...,n} relatively prime to n.
- Given the factorisation of n, it's easy to compute φ(n).
 - For prime n, $\phi(n) = n 1$
 - For distinct primes $p, q, \phi(pq) = (p-1)(q-1)$.

- Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.
- The Euler totient function φ(n) is the number of elements of {1,...,n} relatively prime to n.
- Given the factorisation of n, it's easy to compute φ(n).
 - For prime n, $\phi(n) = n 1$
 - For distinct primes $p, q, \phi(pq) = (p-1)(q-1)$.
- An integer n is said to be B-smooth wrt a positive bound B, if all its prime factors are ≤ B.

- Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., a and b have no common factors.
- The Euler totient function φ(n) is the number of elements of {1,...,n} relatively prime to n.
- Given the factorisation of n, it's easy to compute φ(n).
 - For prime n, $\phi(n) = n 1$
 - For distinct primes $p, q, \phi(pq) = (p-1)(q-1)$.
- An integer n is said to be B-smooth wrt a positive bound B, if all its prime factors are ≤ B.
 - ► There are efficient algorithms that find prime factors p of a composite integer n for which p - 1 is smooth.

Let n be a positive integer. The set

$$Z_n = \{0, ..., n-1\}$$

contains (equivalence classes of) integers mod n.

Let n be a positive integer. The set

$$Z_n = \{0, ..., n-1\}$$

contains (equivalence classes of) integers mod n.

Let a ∈ Z_n. The multiplicative inverse of a modulo n is the unique x ∈ Z_n such that

 $ax \equiv 1 \pmod{n}$.

Such an x exists iff gcd(a, n) = 1.

Let n be a positive integer. The set

$$Z_n = \{0, ..., n-1\}$$

contains (equivalence classes of) integers mod n.

Let a ∈ Z_n. The multiplicative inverse of a modulo n is the unique x ∈ Z_n such that

 $ax \equiv 1 \pmod{n}$.

Such an x exists iff gcd(a, n) = 1.

• We can define a *multiplicative group* \mathbf{Z}_{n}^{*} by

$$\mathbf{Z}_n^* = \{a \in \mathbf{Z}_n \mid \gcd(a, n) = 1\}.$$

Let n be a positive integer. The set

$$Z_n = \{0, ..., n-1\}$$

contains (equivalence classes of) integers mod n.

Let a ∈ Z_n. The multiplicative inverse of a modulo n is the unique x ∈ Z_n such that

 $ax \equiv 1 \pmod{n}$.

Such an x exists iff gcd(a, n) = 1.

• We can define a *multiplicative group* \mathbf{Z}_{n}^{*} by

$$\mathbf{Z}_n^* = \{a \in \mathbf{Z}_n \mid \gcd(a, n) = 1\}.$$

Facts:

Let n be a positive integer. The set

$$Z_n = \{0, ..., n-1\}$$

contains (equivalence classes of) integers mod n.

Let a ∈ Z_n. The multiplicative inverse of a modulo n is the unique x ∈ Z_n such that

 $ax \equiv 1 \pmod{n}$.

Such an x exists iff gcd(a, n) = 1.

• We can define a *multiplicative group* \mathbf{Z}_{n}^{*} by

$$\mathbf{Z}_n^* = \{a \in \mathbf{Z}_n \mid \gcd(a, n) = 1\}.$$

Facts:

 \mathbf{z}_n^* is closed under multiplication

Let n be a positive integer. The set

$$Z_n = \{0, ..., n-1\}$$

contains (equivalence classes of) integers mod n.

Let a ∈ Z_n. The multiplicative inverse of a modulo n is the unique x ∈ Z_n such that

 $ax \equiv 1 \pmod{n}$.

Such an x exists iff gcd(a, n) = 1.

• We can define a *multiplicative group* \mathbf{Z}_{n}^{*} by

$$\mathbf{Z}_n^* = \{a \in \mathbf{Z}_n \mid \gcd(a, n) = 1\}.$$

Facts:

Z $_{n}^{*}$ is closed under multiplication

$$|\mathbf{Z}_n^*| = \phi(n)$$

Let n be a positive integer. The set

$$Z_n = \{0, ..., n-1\}$$

contains (equivalence classes of) integers mod n.

Let a ∈ Z_n. The multiplicative inverse of a modulo n is the unique x ∈ Z_n such that

 $ax \equiv 1 \pmod{n}$.

Such an x exists iff gcd(a, n) = 1.

• We can define a *multiplicative group* \mathbf{Z}_{n}^{*} by

$$\mathbf{Z}_n^* = \{a \in \mathbf{Z}_n \mid \gcd(a, n) = 1\}.$$

Facts:

 \mathbf{Z}_n^* is closed under multiplication

$$|\mathbf{Z}_n^*| = \phi(n)$$

• For prime n, $\mathbf{Z}_n^* = \{1, ..., n-1\}$.

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

```
If gcd(a, n) = 1, then a^{\phi(n)} \equiv 1 \pmod{n}.
```

Fermat's little theorem is used in several places, e.g. a simple probabilistic primality test:

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

- Fermat's little theorem is used in several places, e.g. a simple probabilistic primality test:
 - repeatedly test $a^{p-1} \mod p$ for random a

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

- Fermat's little theorem is used in several places, e.g. a simple probabilistic primality test:
 - repeatedly test a^{p-1} mod p for random a
 - Miller-Rabin improves this (Carmichael numbers fail)

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

- Fermat's little theorem is used in several places, e.g. a simple probabilistic primality test:
 - repeatedly test a^{p-1} mod p for random a
 - Miller-Rabin improves this (Carmichael numbers fail)
- Euler's theorem allows reduction of large powers.

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

If gcd(a, n) = 1, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

- Fermat's little theorem is used in several places, e.g. a simple probabilistic primality test:
 - repeatedly test a^{p-1} mod p for random a
 - Miller-Rabin improves this (Carmichael numbers fail)
- Euler's theorem allows reduction of large powers.

▶ $5^{79} \mod 6 = (5^2 * 5^2)^{19} * 5^3 = 1^{19} * 125 \mod 6 = 5$

Fermat's little theorem

If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's theorem

- Fermat's little theorem is used in several places, e.g. a simple probabilistic primality test:
 - repeatedly test a^{p-1} mod p for random a
 - Miller-Rabin improves this (Carmichael numbers fail)
- Euler's theorem allows reduction of large powers.
 - ▶ $5^{79} \mod 6 = (5^2 * 5^2)^{19} * 5^3 = 1^{19} * 125 \mod 6 = 5$
 - Generally: if $x \equiv y \pmod{\phi(n)}$, then $a^x \equiv a^y \pmod{n}$.

► Let $a \in \mathbf{Z}_n^*$. The order of a is the least t > 0 st $a^t \equiv 1 \pmod{n}$.

- ► Let $a \in \mathbf{Z}_n^*$. The order of a is the least t > 0 st $a^t \equiv 1 \pmod{n}$.
- ► If $g \ge 2$ has order $\phi(n)$, then \mathbf{Z}_n^* is **cyclic** and g is a **generator** (aka *primitive root*) of \mathbf{Z}_n^* .

- ► Let $a \in \mathbf{Z}_n^*$. The order of a is the least t > 0 st $a^t \equiv 1 \pmod{n}$.
- ► If $g \ge 2$ has order $\phi(n)$, then \mathbf{Z}_n^* is **cyclic** and g is a **generator** (aka *primitive root*) of \mathbf{Z}_n^* .
- ► \mathbf{Z}_n^* is cyclic iff $n = 2, 4, p^k, 2p^k$ for odd primes p.

- ► Let $a \in \mathbb{Z}_n^*$. The order of a is the least t > 0 st $a^t \equiv 1 \pmod{n}$.
- ► If $g \ge 2$ has order $\phi(n)$, then \mathbf{Z}_n^* is **cyclic** and g is a **generator** (aka *primitive root*) of \mathbf{Z}_n^* .
- **Z**_n^{*} is cyclic iff $n = 2, 4, p^k, 2p^k$ for odd primes p.
- The **discrete logarithm** of *b* wrt *g* is the *x* st $g^x \equiv b \pmod{n}$.

- ► Let $a \in \mathbb{Z}_n^*$. The order of a is the least t > 0 st $a^t \equiv 1 \pmod{n}$.
- ► If $g \ge 2$ has order $\phi(n)$, then \mathbf{Z}_n^* is **cyclic** and g is a **generator** (aka *primitive root*) of \mathbf{Z}_n^* .
- ► \mathbf{Z}_n^* is cyclic iff $n = 2, 4, p^k, 2p^k$ for odd primes p.
- The **discrete logarithm** of *b* wrt *g* is the *x* st $g^x \equiv b \pmod{n}$.
- ► There is an efficient algorithm for computing discrete logs in Z^{*}_p if p − 1 has smooth factors.

Example: \mathbf{Z}_5^*

Here is the multiplication table for Z₅^{*}, showing xy (mod 5).

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

Example: \mathbf{Z}_5^*

Here is the multiplication table for Z₅^{*}, showing xy (mod 5).

	1	2	3	4	
1	1	2	3	4	
2	2	4	1	3	
3	3	1	4	2	
4	4	3	2	1	

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

►
$$|\mathbf{Z}_{5}^{*}| = \phi(5) = 4$$

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

►
$$|\mathbf{Z}_5^*| = \phi(5) = 4$$

► Inverses: $2^{-1} = 3$, $3^{-1} = 2$, 4^{-1}

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

►
$$|\mathbf{Z}_5^*| = \phi(5) = 4$$

► Inverses: $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$.

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

►
$$|\mathbf{Z}_5^*| = \phi(5) = 4$$

► Inverses: $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$.
► Notice $2^4 = 2 * 2 * 2 * 2 = 1$, also $3^4 = 4^4 = 1$.

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

•
$$|\mathbf{Z}_5^*| = \phi(5) = 4$$

• Inverses: $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$.
• Notice $2^4 = 2 * 2 * 2 * 2 = 1$, also $3^4 = 4^4 = 1$.
• Generators are:

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

•
$$|\mathbf{Z}_5^*| = \phi(5) = 4$$

• Inverses: $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$.
• Notice $2^4 = 2 * 2 * 2 * 2 = 1$, also $3^4 = 4^4 = 1$.
• Generators are: 2, 3, 4.

Here is the multiplication table for Z^{*}₅, showing xy (mod 5).

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

|Z₅^{*}|= φ(5) = 4
Inverses: 2⁻¹ = 3, 3⁻¹= 2, 4⁻¹ = 4.
Notice 2⁴ = 2 * 2 * 2 * 2 = 1, also 3⁴ = 4⁴ = 1.
Generators are: 2, 3, 4.
In Z₅^{*}, the discrete log of 4 for base 3 is

Here is the multiplication table for Z^{*}₅, showing xy (mod 5).

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

|Z₅^{*}|= φ(5) = 4
Inverses: 2⁻¹ = 3, 3⁻¹= 2, 4⁻¹ = 4.
Notice 2⁴ = 2 * 2 * 2 * 2 = 1, also 3⁴ = 4⁴ = 1.
Generators are: 2, 3, 4.
In Z₅^{*}, the discrete log of 4 for base 3 is 2

Here is the multiplication table for Z^{*}₁₅, showing xy (mod 15).

	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
13	13	11	7	1	14	8	4	2
14	14	13	11	8	7	4	2	1

$$|\mathbf{Z}_{15}^*| = \phi(15) = (3-1) * (5-1) = 8.$$

This group is not cyclic.
 Exercise: find orders of each element.

Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary

A key-pair is based on product of two large, distinct, random secret primes, n=pq with p and q roughly the same size, together with a random integer e with 1 < e < φ and gcd(e, φ) = 1, where</p>

$$\phi = \phi(n) = (p-1)(q-1).$$

Public key is (n, e) and n is called the *modulus*.

A key-pair is based on product of two large, distinct, random secret primes, n=pq with p and q roughly the same size, together with a random integer e with 1 < e < φ and gcd(e, φ) = 1, where</p>

$$\phi = \phi(n) = (p-1)(q-1).$$

Public key is (*n*, *e*) and *n* is called the *modulus*.

• Private key is *d*, unique s.t. $ed \equiv 1 \pmod{\phi}$.

A key-pair is based on product of two large, distinct, random secret primes, n=pq with p and q roughly the same size, together with a random integer e with 1 < e < φ and gcd(e, φ) = 1, where</p>

$$\phi = \phi(n) = (p-1)(q-1).$$

Public key is (*n*, *e*) and *n* is called the *modulus*.

- Private key is *d*, unique s.t. $ed \equiv 1 \pmod{\phi}$.
- Message and cipher space $\mathcal{M} = \mathcal{C} = \{0, \dots, n-1\}.$

A key-pair is based on product of two large, distinct, random secret primes, n=pq with p and q roughly the same size, together with a random integer e with 1 < e < φ and gcd(e, φ) = 1, where</p>

$$\phi = \phi(n) = (p-1)(q-1).$$

Public key is (n, e) and n is called the *modulus*.

- ▶ Private key is *d*, unique s.t. $ed \equiv 1 \pmod{\phi}$.
- Message and cipher space $\mathcal{M} = \mathcal{C} = \{0, \dots, n-1\}.$
- Encryption is exponentiation with public key e.
 Decryption is exponentiation with private key d.

$$E_{(n,e)}(m) = m^e \mod n$$
$$D_d(c) = c^d \mod n$$

A key-pair is based on product of two large, distinct, random secret primes, n=pq with p and q roughly the same size, together with a random integer e with 1 < e < φ and gcd(e, φ) = 1, where</p>

$$\phi = \phi(n) = (p-1)(q-1).$$

Public key is (n, e) and n is called the *modulus*.

- ▶ Private key is *d*, unique s.t. $ed \equiv 1 \pmod{\phi}$.
- Message and cipher space $\mathcal{M} = \mathcal{C} = \{0, \dots, n-1\}.$
- Encryption is exponentiation with public key e.
 Decryption is exponentiation with private key d.

$$E_{(n,e)}(m) = m^e \mod n$$
$$D_d(c) = c^d \mod n$$

► Decryption works, since for some k, $ed = 1 + k\phi$ and $(m^e)^d \equiv m^{ed} \equiv m^{1+k\phi} \equiv mm^{k\phi} \equiv m \pmod{n}$ using Fermat's theorem. (Exercise: fill details in).

Recall that RSA is an example of a **reversible** public-key encryption scheme. This is because *e* and *d* are symmetric in the definition. RSA digital signatures make use of this.

- Recall that RSA is an example of a reversible public-key encryption scheme. This is because e and d are symmetric in the definition. RSA digital signatures make use of this.
- RSA is often used with randomization (e.g., salting with random appendix) to prevent chosen-plaintext and other attacks.

- Recall that RSA is an example of a reversible public-key encryption scheme. This is because e and d are symmetric in the definition. RSA digital signatures make use of this.
- RSA is often used with randomization (e.g., salting with random appendix) to prevent chosen-plaintext and other attacks.
- It's the most popular and cryptanalysed public-key algorithm. Largest modulus factored in the (now defunct) RSA challenge is 768 bits (232 digits), factored using the Number Field Sieve (NFS) on 12 December 2009.

- Recall that RSA is an example of a reversible public-key encryption scheme. This is because e and d are symmetric in the definition. RSA digital signatures make use of this.
- RSA is often used with randomization (e.g., salting with random appendix) to prevent chosen-plaintext and other attacks.
- It's the most popular and cryptanalysed public-key algorithm. Largest modulus factored in the (now defunct) RSA challenge is 768 bits (232 digits), factored using the Number Field Sieve (NFS) on 12 December 2009.
 - It took the equivalent of 2000 years of computing on a single core 2.2GHz AMD Opteron. On the order of 2⁶⁷ instructions were carried out.

- Recall that RSA is an example of a **reversible** public-key encryption scheme. This is because *e* and *d* are symmetric in the definition. RSA digital signatures make use of this.
- RSA is often used with randomization (e.g., salting with random appendix) to prevent chosen-plaintext and other attacks.
- It's the most popular and cryptanalysed public-key algorithm. Largest modulus factored in the (now defunct) RSA challenge is 768 bits (232 digits), factored using the Number Field Sieve (NFS) on 12 December 2009.
 - It took the equivalent of 2000 years of computing on a single core 2.2GHz AMD Opteron. On the order of 2⁶⁷ instructions were carried out.
 - Factoring a 1024 bit modulus would take about 1000 times more work (and would be achievable in less than 5 years from now).

RSA Remarks ...

- In practice, RSA is used to encrypt symmetric keys, not messages
- Like most public key algorithms, the RSA key size is larger, and the computations are more expensive (compared to AES, for example)
- This is believed to be a necessary result of the key being publicly available
- With regard to attack complexity based upon an n-bit key
 - A worst-case attack algorithm on a symmetric cipher would take O(2ⁿ) work (exponential).
 - A worst-case attack algorithm for RSA is dependent upon the complexity of factoring, and thus would take O(e^{o(n)}) (sub-exponential)

FACTORING Integer factorization. Given positive n, find its prime factorization, i.e., distinct p_i such that $n = p_1^{e_1} \cdots p_n^{e_n}$ for some $e_i \ge 1$.

FACTORING Integer factorization. Given positive *n*, find its prime factorization, i.e., distinct p_i such that $n = p_1^{e_1} \cdots p_n^{e_n}$ for some $e_i \ge 1$.

SQRROOT Given a such that $a \equiv x^2 \pmod{n}$, find x.

FACTORING Integer factorization. Given positive *n*, find its prime factorization, i.e., distinct p_i such that $n = p_1^{e_1} \cdots p_n^{e_n}$ for some $e_i \ge 1$.

SQRROOT Given a such that $a \equiv x^2 \pmod{n}$, find x.

RSAP RSA inversion. Given *n* such that n = pq for some odd primes $p \neq q$, and *e* such that gcd(e, (p - 1), (q - 1)) = 1, and *c*, find *m* such that $m^e \equiv c \pmod{n}$.

FACTORING Integer factorization. Given positive *n*, find its prime factorization, i.e., distinct p_i such that $n = p_1^{e_1} \cdots p_n^{e_n}$ for some $e_i \ge 1$.

SQRROOT Given a such that $a \equiv x^2 \pmod{n}$, find x.

RSAP RSA inversion. Given *n* such that n = pq for some odd primes $p \neq q$, and *e* such that gcd(e, (p - 1), (q - 1)) = 1, and *c*, find *m* such that $m^e \equiv c \pmod{n}$.

Note: SQRROOT = $_P$ FACTORING and RSAP \leq_P FACTORING

- ► $A \leq_P B$ means there is a polynomial time (efficient) reduction from problem A to problem B.
- $A =_P B$ means $A \leq_P B$ and $B \leq_P A$
- So: RSAP is no harder than FACTORING. Is it easier? An open question.

Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary

DLP Discrete logarithm problem. Given prime p, a generator g of \mathbf{Z}_{p}^{*} , and an element $a \in \mathbf{Z}_{p}^{*}$, find the integer x, with $0 \le x \le p - 2$ such that $g^{x} \equiv a$ (mod p).

- DLP Discrete logarithm problem. Given prime p, a generator g of \mathbf{Z}_{p}^{*} , and an element $a \in \mathbf{Z}_{p}^{*}$, find the integer x, with $0 \le x \le p 2$ such that $g^{x} \equiv a$ (mod p).
- DHP Diffie-Hellman problem. Given prime p, a generator g of \mathbf{Z}_{p}^{*} , and elements $g^{a} \mod p$ and $g^{b} \mod p$, find $g^{ab} \mod p$.

- DLP Discrete logarithm problem. Given prime p, a generator g of \mathbf{Z}_p^* , and an element $a \in \mathbf{Z}_p^*$, find the integer x, with $0 \le x \le p 2$ such that $g^x \equiv a$ (mod p).
- DHP Diffie-Hellman problem. Given prime p, a generator g of \mathbf{Z}_{p}^{*} , and elements $g^{a} \mod p$ and $g^{b} \mod p$, find $g^{ab} \mod p$.

Note: DHP \leq_P DLP. In some cases, DHP= $_P$ DLP.

Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of Z^{*}_p.

Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of Z^{*}_p.

> Message 1. $A \rightarrow B$: $g^{\times} \mod p$ Message 2. $B \rightarrow A$: $g^{y} \mod p$

Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of Z^{*}_p.

Message 1.
$$A \rightarrow B$$
: $g^{\times} \mod p$
Message 2. $B \rightarrow A$: $g^{y} \mod p$

► A chooses random x, $1 \le x , sends msg 1.$

- Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of Z^{*}_p.
 - Message 1. $A \rightarrow B$: $g^{\times} \mod p$ Message 2. $B \rightarrow A$: $g^{y} \mod p$
 - A chooses random x, $1 \le x , sends msg 1.$
 - ▶ *B* chooses random *y*, $1 \le y , sends msg 2.$

Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of Z^{*}_p.

> Message 1. $A \rightarrow B$: $g^{\times} \mod p$ Message 2. $B \rightarrow A$: $g^{y} \mod p$

- A chooses random x, $1 \le x , sends msg 1.$
- ▶ *B* chooses random y, $1 \le y , sends msg 2.$
- B receives g^{x} , computes shared key $K = (g^{x})^{y} \mod p$.
Diffie-Hellman key agreement

Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of Z^{*}_p.

> Message 1. $A \rightarrow B$: $g^{\times} \mod p$ Message 2. $B \rightarrow A$: $g^{y} \mod p$

- A chooses random x, $1 \le x , sends msg 1.$
- ▶ *B* chooses random *y*, $1 \le y , sends msg 2.$
- B receives g^{x} , computes shared key $K = (g^{x})^{y} \mod p$.
- A receives g^{y} , computes shared key $K = (g^{y})^{x} \mod p$.

Diffie-Hellman key agreement

Diffie-Hellman key agreement allows two principals to agree a shared key without authentication. Initial setup: choose and publish a large "secure" prime p and generator g of Z^{*}_p.

> Message 1. $A \rightarrow B$: $g^{\times} \mod p$ Message 2. $B \rightarrow A$: $g^{y} \mod p$

- A chooses random x, $1 \le x , sends msg 1.$
- ▶ *B* chooses random *y*, $1 \le y , sends msg 2.$
- B receives g^{x} , computes shared key $K = (g^{x})^{y} \mod p$.
- A receives g^{y} , computes shared key $K = (g^{y})^{x} \mod p$.
- Security rests on intractability of DHP for p and g.
 Protocol is safe against passive adversaries, but not active ones.

Exercise: try some artificial examples with p = 11, g = 2. Show a MITM attack against the protocol.

- Shamir's 'No Key' algorithm captures our earlier class demonstration, similar to Diffie-Hellman. Initial setup: choose and publish a large "secure" prime p and generator g of Z^{*}_n.
 - Message 1. $A \rightarrow B$: $K^{\times} \mod p$ Message 2. $B \rightarrow A$: $K^{xy} \mod p$ Message 3. $A \rightarrow B$: $K^{y} \mod p$

Message 1.	$A \rightarrow B$:	K ^x mod p
Message 2.	$B \rightarrow A$:	K ^{xy} mod p
Message 3.	$A \rightarrow B$:	K ^y mod p

- A chooses random z, $1 \le z , and computes$ $the symmetric key <math>K = g^z \mod p$
- ► A chooses random x, $1 \le x , sends msg 1.$

Message 1.	$A \rightarrow B$:	K ^x mod p
Message 2.	$B \rightarrow A$:	K ^{xy} mod p
Message 3.	$A \rightarrow B$:	K ^y mod p

- A chooses random z, $1 \le z , and computes$ $the symmetric key <math>K = g^{z} \mod p$
- A chooses random x, $1 \le x , sends msg 1.$
- ▶ *B* chooses random *y*, $1 \le y , sends msg 2.$

Message 1.	$A \rightarrow B$:	K ^x mod p
Message 2.	$B \rightarrow A$:	K ^{xy} mod p
Message 3.	$A \rightarrow B$:	K ^y mod p

- A chooses random z, $1 \le z , and computes$ $the symmetric key <math>K = g^z \mod p$
- A chooses random x, $1 \le x , sends msg 1.$
- ▶ *B* chooses random *y*, $1 \le y , sends msg 2.$
- A computes $x^{-1} \mod p 1$, sends msg 3.

Message 1.	$A \rightarrow B$:	K ^x mod p
Message 2.	$B \rightarrow A$:	K ^{xy} mod p
Message 3.	$A \rightarrow B$:	K ^y mod p

- A chooses random z, $1 \le z , and computes$ $the symmetric key <math>K = g^z \mod p$
- A chooses random x, $1 \le x , sends msg 1.$
- ▶ *B* chooses random *y*, $1 \le y , sends msg 2.$
- A computes $x^{-1} \mod p 1$, sends msg 3.
- B receives K^y mod p, computes y⁻¹ mod p − 1 and recovers key K.

Message 1.	$A \rightarrow B$:	K ^x mod p
Message 2.	$B \rightarrow A$:	K ^{xy} mod p
Message 3.	$A \rightarrow B$:	K ^y mod p

- A chooses random z, $1 \le z , and computes$ $the symmetric key <math>K = g^z \mod p$
- A chooses random x, $1 \le x , sends msg 1.$
- ▶ *B* chooses random *y*, $1 \le y , sends msg 2.$
- A computes $x^{-1} \mod p 1$, sends msg 3.
- B receives K^y mod p, computes y⁻¹ mod p − 1 and recovers key K.
- Security rests on intractability of DHP for p and g.
 Protocol is safe against passive adversaries, but not active ones.

Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary

A key-pair is based on a large random prime p and generator g of Z^{*}_p, and a random integer d. Public key: (p, g, g^d mod p), private key: d.

- A key-pair is based on a large random prime p and generator g of Z^{*}_p, and a random integer d. Public key: (p, g, g^d mod p), private key: d.
- ► The message space M = {0,..., p 1}, and the encryption operation is given by selecting a random integer r and computing a pair:

$$E_{(p,g,g^d)}(m) = (e,c) \quad \text{where} \quad e = g^r \mod p$$
$$c = m(g^d)^r \mod p.$$

- A key-pair is based on a large random prime p and generator g of Z^{*}_p, and a random integer d. Public key: (p, g, g^d mod p), private key: d.
- ► The message space M = {0,..., p 1}, and the encryption operation is given by selecting a random integer r and computing a pair:

$$E_{(p,g,g^d)}(m) = (e,c) \quad \text{where} \quad e = g^r \mod p$$
$$c = m(g^d)^r \mod p.$$

Decryption takes an element of ciphertext C = M × M, and computes:

 $D_d(e, c) = e^{-d} c \mod p$ where $e^{-d} = e^{p-1-d} \mod p$.

- A key-pair is based on a large random prime p and generator g of Z^{*}_p, and a random integer d. Public key: (p, g, g^d mod p), private key: d.
- ► The message space M = {0,..., p 1}, and the encryption operation is given by selecting a random integer r and computing a pair:

$$E_{(p,g,g^d)}(m) = (e,c) \quad \text{where} \quad e = g^r \mod p$$
$$c = m(g^d)^r \mod p.$$

Decryption takes an element of ciphertext C = M × M, and computes:

 $D_d(e, c) = e^{-d} c \mod p$ where $e^{-d} = e^{p-1-d} \mod p$.

• Decryption works because $e^{-d} = g^{-dr}$, so

$$D_d(e, c) \equiv g^{-dr} m g^{dr} \equiv m \pmod{p}.$$

- A key-pair is based on a large random prime p and generator g of Z^{*}_p, and a random integer d. Public key: (p, g, g^d mod p), private key: d.
- ► The message space M = {0,..., p 1}, and the encryption operation is given by selecting a random integer r and computing a pair:

$$E_{(p,g,g^d)}(m) = (e,c) \quad \text{where} \quad e = g^r \mod p$$
$$c = m(g^d)^r \mod p.$$

Decryption takes an element of ciphertext C = M × M, and computes:

 $D_d(e, c) = e^{-d} c \mod p$ where $e^{-d} = e^{p-1-d} \mod p$.

• Decryption works because $e^{-d} = g^{-dr}$, so

$$D_d(\mathbf{e}, \mathbf{c}) \equiv g^{-dr} m g^{dr} \equiv m \pmod{p}.$$

 This is like using Diffie-Hellman to agree a key g^{dr} and encrypting m by multiplication.

ElGamal is an example of a randomized encryption scheme, so no need to add salt. Security relies in intractability of DHP. Choosing different r for different messages is critical. Exercise: why?

 ElGamal is an example of a randomized encryption scheme, so no need to add salt. Security relies in intractability of DHP. Choosing different *r* for different messages is critical. Exercise: why?
 Efficiency:

- ElGamal is an example of a randomized encryption scheme, so no need to add salt. Security relies in intractability of DHP. Choosing different r for different messages is critical. Exercise: why?
 Efficiency:
- Efficiency:
 - ciphertext twice as long as plaintext

- ElGamal is an example of a randomized encryption scheme, so no need to add salt. Security relies in intractability of DHP. Choosing different r for different messages is critical. Exercise: why?
- Efficiency:
 - ciphertext twice as long as plaintext
 - encryption requires two modular exponentiations, which can be sped up by picking the random r with some additional structure (with care).

- ElGamal is an example of a randomized encryption scheme, so no need to add salt. Security relies in intractability of DHP. Choosing different r for different messages is critical. Exercise: why?
 Efficiency:
- Efficiency:
 - ciphertext twice as long as plaintext
 - encryption requires two modular exponentiations, which can be sped up by picking the random r with some additional structure (with care).
- The prime p and generator g can be fixed for the system, reducing the size of public keys. Then exponentiation can be speeded up by precomputation; however, so can the best-known algorithm for calculating discrete logarithms, so a larger modulus would be warranted.

- ElGamal is an example of a randomized encryption scheme, so no need to add salt. Security relies in intractability of DHP. Choosing different r for different messages is critical. Exercise: why?
- Efficiency:
 - ciphertext twice as long as plaintext
 - encryption requires two modular exponentiations, which can be sped up by picking the random r with some additional structure (with care).
- The prime p and generator g can be fixed for the system, reducing the size of public keys. Then exponentiation can be speeded up by precomputation; however, so can the best-known algorithm for calculating discrete logarithms, so a larger modulus would be warranted.
- The security of ElGamal encryption and signing is based on the intractability of the DHP for p. Several other conditions are required.

Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary

Summary: Current Public Key algorithms

- RSA, ElGamal already described.
- Elliptic curve schemes. Use ElGamal techniques. Have shorter keys for same amount of security.
- **Rabin** encryption. Based on SQRROOT problem.
- Probabilistic schemes, which achieve provable security based on Random Oracle Method (ROM) arguments.
- Cramer-Shoup. Extends ElGamal with use of hash functions in critical places to provide provable security without ROM. Less efficient than ElGamal: slower and ciphertext twice as long.

References

Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone, editors. *Handbook of Applied Cryptography*.
 CRC Press Series on Discrete Mathematics and Its Applications. CRC Press, 1997.
 Online version at http://www.cacr.math.uwaterloo.ca/hac.

Nigel Smart. Cryptography: An Introduction. McGraw-Hill, 2003. Third edition online: http: //www.cs.bris.ac.uk/~nigel/Crypto_Book/

Recommended Reading

Chapter 11, 12, 13 of Smart (3rd Ed).