
Programming Securely II
Computer Security Lectures 16 & 17

David Aspinall

School of Informatics

University of Edinburgh

2nd, 6th March 2006

Outline

Web security

Java Security

Trusting code

Language futures for security

Outline

Web security

Java Security

Trusting code

Language futures for security

Web security: client-side threats

I Risky treatment of MIME-types: e.g., shell-escapes in
troff. By design downloaded active content (e.g., Java,
ActiveX controls) should run in a restricted environment.
Problems come when restrictions fail, or aren’t tight enough.

Web security: client-side threats

I Risky treatment of MIME-types: e.g., shell-escapes in
troff. By design downloaded active content (e.g., Java,
ActiveX controls) should run in a restricted environment.
Problems come when restrictions fail, or aren’t tight enough.

I SSL issues: revoked certificates, spoofed site names, mixed
encrypted/unencrypted pages.

Web security: client-side threats

I Risky treatment of MIME-types: e.g., shell-escapes in
troff. By design downloaded active content (e.g., Java,
ActiveX controls) should run in a restricted environment.
Problems come when restrictions fail, or aren’t tight enough.

I SSL issues: revoked certificates, spoofed site names, mixed
encrypted/unencrypted pages.

I Browsers store cookies which have confidentiality
implications. Even without cookies, web browsing is much less
anonymous than it feels: information is stored in browser’s
history and document cache, various firewall and proxy logs,
and each of the remote sites visited. This is even before any
snitchware is present. (This is all fantastic for market
researchers).

Web security: client-side threats

I Risky treatment of MIME-types: e.g., shell-escapes in
troff. By design downloaded active content (e.g., Java,
ActiveX controls) should run in a restricted environment.
Problems come when restrictions fail, or aren’t tight enough.

I SSL issues: revoked certificates, spoofed site names, mixed
encrypted/unencrypted pages.

I Browsers store cookies which have confidentiality
implications. Even without cookies, web browsing is much less
anonymous than it feels: information is stored in browser’s
history and document cache, various firewall and proxy logs,
and each of the remote sites visited. This is even before any
snitchware is present. (This is all fantastic for market
researchers).

I Untrained users may unwittingly make bad security decisions.

Web security: client-side threats

I Risky treatment of MIME-types: e.g., shell-escapes in
troff. By design downloaded active content (e.g., Java,
ActiveX controls) should run in a restricted environment.
Problems come when restrictions fail, or aren’t tight enough.

I SSL issues: revoked certificates, spoofed site names, mixed
encrypted/unencrypted pages.

I Browsers store cookies which have confidentiality
implications. Even without cookies, web browsing is much less
anonymous than it feels: information is stored in browser’s
history and document cache, various firewall and proxy logs,
and each of the remote sites visited. This is even before any
snitchware is present. (This is all fantastic for market
researchers).

I Untrained users may unwittingly make bad security decisions.

I Buggy browsers: buffer overflows, crypto bugs, etc.

Web security: server-side threats

I Access control: preventing certain files being served.

Web security: server-side threats

I Access control: preventing certain files being served.

I Complex or malicious URLs

Web security: server-side threats

I Access control: preventing certain files being served.

I Complex or malicious URLs

I Denial of service attacks

Web security: server-side threats

I Access control: preventing certain files being served.

I Complex or malicious URLs

I Denial of service attacks

I Remote authoring and administration tools

Web security: server-side threats

I Access control: preventing certain files being served.

I Complex or malicious URLs

I Denial of service attacks

I Remote authoring and administration tools

I Buggy servers, with attendant security risks

Web security: server-side threats

I Access control: preventing certain files being served.

I Complex or malicious URLs

I Denial of service attacks

I Remote authoring and administration tools

I Buggy servers, with attendant security risks

I Server-side scripting languages: C or shell CGI, PHP, ASP,
JSP, Python, Ruby, all have serious security implications in
configuration and execution. File systems and permissions
have to be carefully designed. That’s before any implemented
web application is even considered. . .

Web programming: application security

Many issues (only some of which were introduced in the practical).

Web programming: application security

Many issues (only some of which were introduced in the practical).

I Input validation: to prevent SQL injection, command
injection, other confidentiality attacks. AJAX: beware

client-side validation!. Understand metacharacters at every
point. Use labels/indexes for hidden values, not values
themselves.

Web programming: application security

Many issues (only some of which were introduced in the practical).

I Input validation: to prevent SQL injection, command
injection, other confidentiality attacks. AJAX: beware

client-side validation!. Understand metacharacters at every
point. Use labels/indexes for hidden values, not values
themselves.

I Output filtering: cross-site scripting (XSS), when
attacker-generated HTML appears on site: used for session
hijacking, phishing attacks. Beware passing informative error
messages.

Web programming: application security

Many issues (only some of which were introduced in the practical).

I Input validation: to prevent SQL injection, command
injection, other confidentiality attacks. AJAX: beware

client-side validation!. Understand metacharacters at every
point. Use labels/indexes for hidden values, not values
themselves.

I Output filtering: cross-site scripting (XSS), when
attacker-generated HTML appears on site: used for session
hijacking, phishing attacks. Beware passing informative error
messages.

I Careful cryptography: encryption/hashing to protect server

state in client, use of appropriate authentication mechanisms
for web accounts (never Referer header).

Web programming: application security

Many issues (only some of which were introduced in the practical).

I Input validation: to prevent SQL injection, command
injection, other confidentiality attacks. AJAX: beware

client-side validation!. Understand metacharacters at every
point. Use labels/indexes for hidden values, not values
themselves.

I Output filtering: cross-site scripting (XSS), when
attacker-generated HTML appears on site: used for session
hijacking, phishing attacks. Beware passing informative error
messages.

I Careful cryptography: encryption/hashing to protect server

state in client, use of appropriate authentication mechanisms
for web accounts (never Referer header).

Web programming: application security

Many issues (only some of which were introduced in the practical).

I Input validation: to prevent SQL injection, command
injection, other confidentiality attacks. AJAX: beware

client-side validation!. Understand metacharacters at every
point. Use labels/indexes for hidden values, not values
themselves.

I Output filtering: cross-site scripting (XSS), when
attacker-generated HTML appears on site: used for session
hijacking, phishing attacks. Beware passing informative error
messages.

I Careful cryptography: encryption/hashing to protect server

state in client, use of appropriate authentication mechanisms
for web accounts (never Referer header).

Huseby’s book Innocent code — a security wake-up call for web

programmers is recommended.

Outline

Web security

Java Security

Trusting code

Language futures for security

Security in Java

Java 1.0 had a sandbox security model, where downloaded Java
applets ran in a restricted environment with no access to local files,
etc: often too restrictive. Java 2 has a more flexible, fine-grained
level of control:

Applications and applets are

subject to a security pol-

icy which specifies protection

domains based on location of

code, whether it is signed by

a trusted entity, and the user

identity. Each domain spec-

ifies a set of permissions for

accessing resources.

This picture is reproduced from the Java Security Tutorial (c) Sun

Java security architecture

I A SecurityManager is installed by web browsers for Java
applets; an application must either itself install the security
manager, or be invoked with the option
-Djava.security.manager. If the security manager’s checks
fail, a java.lang.SecurityException is raised.

I Access control in Java is based on protection domains which
group together the set of objects which are currently
accessible by a principal.

Class Domain Permissions

A.class

B.class domain X permissions X

C.class

D.class domain Y permissions Y

E.class

Java access control permissions

I Domains are associated with sets of permissions, such as:

Java access control permissions

I Domains are associated with sets of permissions, such as:

Java access control permissions

I Domains are associated with sets of permissions, such as:
java.security.AllPermission every resource
java.io.FilePermission file system access
java.net.SocketPermission accept/connect based on host/IP & port
java.awt.AWTPermission window-system permissions
java.lang.RuntimePermission JVM configuring; printing; thread control
java.security. accessing security policy, key store
SecurityPermission

I Permissions may be associated with a target and some actions:

Java access control permissions

I Domains are associated with sets of permissions, such as:
java.security.AllPermission every resource
java.io.FilePermission file system access
java.net.SocketPermission accept/connect based on host/IP & port
java.awt.AWTPermission window-system permissions
java.lang.RuntimePermission JVM configuring; printing; thread control
java.security. accessing security policy, key store
SecurityPermission

I Permissions may be associated with a target and some actions:

import java.io.FilePermission;

FilePermission p1 = new

FilePermission("/tmp/myfile", "read");

FilePermission p2 = new

FilePermission("/tmp/*", "read");

Java access control permissions

I Domains are associated with sets of permissions, such as:
java.security.AllPermission every resource
java.io.FilePermission file system access
java.net.SocketPermission accept/connect based on host/IP & port
java.awt.AWTPermission window-system permissions
java.lang.RuntimePermission JVM configuring; printing; thread control
java.security. accessing security policy, key store
SecurityPermission

I Permissions may be associated with a target and some actions:

import java.io.FilePermission;

FilePermission p1 = new

FilePermission("/tmp/myfile", "read");

FilePermission p2 = new

FilePermission("/tmp/*", "read");

Java access control permissions

I Domains are associated with sets of permissions, such as:
java.security.AllPermission every resource
java.io.FilePermission file system access
java.net.SocketPermission accept/connect based on host/IP & port
java.awt.AWTPermission window-system permissions
java.lang.RuntimePermission JVM configuring; printing; thread control
java.security. accessing security policy, key store
SecurityPermission

I Permissions may be associated with a target and some actions:

import java.io.FilePermission;

FilePermission p1 = new

FilePermission("/tmp/myfile", "read");

FilePermission p2 = new

FilePermission("/tmp/*", "read");

Permissions implement an implies method used to make
access control decisions. Here p2.implies(p1).

Java security policies

I The system security policy for a Java application environment
specifies permissions available for code from various sources,
represented by a Policy object. Only one in effect at a time.

I A Policy object evaluates the global policy using the
ProtectionDomain for a class, and returns an appropriate
Permissions object.

I Java supplies a GUI policytool utility for editing ASCII format
policy files, with entries like this, specifying a key store and
zero or more “grant” entries:

keystore ".keystore", "JKS";

grant principal com.sun.security.auth.UnixPrincipal "da" {

permission java.util.PropertyPermission "java.home", "read";

permission java.io.FilePermission "/tmp/foo", "read,write";

};

Default, system policy is in javahome/lib/security/java.policy.
User policy is in userhome.java.policy.

Java security extensions

I The Java security extensions add additional APIs for
programming security features. Previously add-ons; integrated
since J2SDK v1.4.

Java security extensions

I The Java security extensions add additional APIs for
programming security features. Previously add-ons; integrated
since J2SDK v1.4.

I Java Cryptography Extension (JCE)
A Java framework for cryptographic functionality, including
message digests, encryption, signing, and X.509 certificates.

Java security extensions

I The Java security extensions add additional APIs for
programming security features. Previously add-ons; integrated
since J2SDK v1.4.

I Java Cryptography Extension (JCE)
A Java framework for cryptographic functionality, including
message digests, encryption, signing, and X.509 certificates.

I Java Secure Socket Extension (JSSE).

Java security extensions

I The Java security extensions add additional APIs for
programming security features. Previously add-ons; integrated
since J2SDK v1.4.

I Java Cryptography Extension (JCE)
A Java framework for cryptographic functionality, including
message digests, encryption, signing, and X.509 certificates.

I Java Secure Socket Extension (JSSE).
I Java Authentication and Authorization Service (JAAS)

Used for “reliable and secure” authentication of users, to
determine who is currently executing Java code; and for
authorization of users to ensure they have the permissions
necessary for desired actions.

Java security extensions

I The Java security extensions add additional APIs for
programming security features. Previously add-ons; integrated
since J2SDK v1.4.

I Java Cryptography Extension (JCE)
A Java framework for cryptographic functionality, including
message digests, encryption, signing, and X.509 certificates.

I Java Secure Socket Extension (JSSE).
I Java Authentication and Authorization Service (JAAS)

Used for “reliable and secure” authentication of users, to
determine who is currently executing Java code; and for
authorization of users to ensure they have the permissions
necessary for desired actions.

I Java GSS-API.
Bindings for Generic Security Service API (RFC2853). Used
for securely exchanging messages between communicating
applications, using various underlying mechanisms (e.g.,
Kerberos).

Java Cryptography Extension (JCE)

I Crypto framework. A provider plug-in architecture allows
multiple simultaneous implementations. Was split out of SDK
because of export restrictions; since v1.4, JCE included but
limited (import restrictions).

Java Cryptography Extension (JCE)

I Crypto framework. A provider plug-in architecture allows
multiple simultaneous implementations. Was split out of SDK
because of export restrictions; since v1.4, JCE included but
limited (import restrictions).

I Has algorithm independence, clients don’t need to understand
algorithms; abstract “engine” classes provide different services.

Java Cryptography Extension (JCE)

I Crypto framework. A provider plug-in architecture allows
multiple simultaneous implementations. Was split out of SDK
because of export restrictions; since v1.4, JCE included but
limited (import restrictions).

I Has algorithm independence, clients don’t need to understand
algorithms; abstract “engine” classes provide different services.

I Service provider interfaces (SPIs) added statically or
dynamically; clients query installed providers to find out
supported services. JVM and clients specify preference orders.

Java Cryptography Extension (JCE)

I Crypto framework. A provider plug-in architecture allows
multiple simultaneous implementations. Was split out of SDK
because of export restrictions; since v1.4, JCE included but
limited (import restrictions).

I Has algorithm independence, clients don’t need to understand
algorithms; abstract “engine” classes provide different services.

I Service provider interfaces (SPIs) added statically or
dynamically; clients query installed providers to find out
supported services. JVM and clients specify preference orders.

I Key management is through a “keystore” database. Different
providers may implement different keystore formats.

Java Cryptography Extension (JCE)

I Crypto framework. A provider plug-in architecture allows
multiple simultaneous implementations. Was split out of SDK
because of export restrictions; since v1.4, JCE included but
limited (import restrictions).

I Has algorithm independence, clients don’t need to understand
algorithms; abstract “engine” classes provide different services.

I Service provider interfaces (SPIs) added statically or
dynamically; clients query installed providers to find out
supported services. JVM and clients specify preference orders.

I Key management is through a “keystore” database. Different
providers may implement different keystore formats.

I SUN provider: DSA, MD5, SHA-1, SHA1PRNG, X.509
certificates, keystore implementation for proprietary keystore
type JKS. Another: Cryptix http://www.cryptix.org.

http://www.cryptix.org

Java Cryptography Extension (JCE)

I Crypto framework. A provider plug-in architecture allows
multiple simultaneous implementations. Was split out of SDK
because of export restrictions; since v1.4, JCE included but
limited (import restrictions).

I Has algorithm independence, clients don’t need to understand
algorithms; abstract “engine” classes provide different services.

I Service provider interfaces (SPIs) added statically or
dynamically; clients query installed providers to find out
supported services. JVM and clients specify preference orders.

I Key management is through a “keystore” database. Different
providers may implement different keystore formats.

I SUN provider: DSA, MD5, SHA-1, SHA1PRNG, X.509
certificates, keystore implementation for proprietary keystore
type JKS. Another: Cryptix http://www.cryptix.org.

I See: javax.crypto, javax.crypto.interfaces, javax.crypto.spec.

http://www.cryptix.org

JCE cryptography services

I A cryptography service is associated with a particular
algorithm or type, and manipulates or generates data, keys,
algorithm parameters, keystores, or certificates.

JCE cryptography services

I A cryptography service is associated with a particular
algorithm or type, and manipulates or generates data, keys,
algorithm parameters, keystores, or certificates.

I Engine classes include:
MessageDigest generate message digests (MDCs)
Signature sign data and verify digital signatures.
KeyPairGenerator generate public-private key-pair.
CertificateFactory create certificates and CRLs.
KeyStore create and manage key databases.
AlgorithmParameters manage parameters for an algorithm.
SecureRandom random or pseudo-random numbers.

JCE cryptography services

I A cryptography service is associated with a particular
algorithm or type, and manipulates or generates data, keys,
algorithm parameters, keystores, or certificates.

I Engine classes include:
MessageDigest generate message digests (MDCs)
Signature sign data and verify digital signatures.
KeyPairGenerator generate public-private key-pair.
CertificateFactory create certificates and CRLs.
KeyStore create and manage key databases.
AlgorithmParameters manage parameters for an algorithm.
SecureRandom random or pseudo-random numbers.

I Factory methods in engine classes are used to return instances
of the class, e.g.
Signature.getInstance("SHA1withDSA").

Java Secure Socket Extension (JSSE)

I The JSSE is also based on a provider plug-in architecture.

I Has a simple structure. Main use is with SSL client sockets,
SSL server sockets, and SSL session handles. Sample classes:
SSLSocket socket for SSL/TLS/WTLS protocols
SSLSocketFactory factory for SSLSocket objects
SSLServerSocket sever socket for SSL/TLS/WTLS
· · · Factory factory for SSLServerSockets
SSLSession encapsulation of SSL session (an interface)

I Creating SSL client or server sockets is as easy as creating
ordinary Java TCP/IP sockets: each SSL class extends the
corresponding ordinary TCP socket class, and provides a few
extra hooks for setting security parameters.

I See javax.net.ssl, also javax.net and javax.security.cert.

Authentication and Authorization (JAAS)

I JAAS has a pluggable architecture, so applications are
independent of underlying authentication methods:
implementation of authentication method is decided at
runtime, in a login configuration file.

Authentication and Authorization (JAAS)

I JAAS has a pluggable architecture, so applications are
independent of underlying authentication methods:
implementation of authentication method is decided at
runtime, in a login configuration file.

I A Subject may have multiple identities, each of which is a
Principal (name). Subjects also own security-related public
and private credentials (e.g., key material).

Authentication and Authorization (JAAS)

I JAAS has a pluggable architecture, so applications are
independent of underlying authentication methods:
implementation of authentication method is decided at
runtime, in a login configuration file.

I A Subject may have multiple identities, each of which is a
Principal (name). Subjects also own security-related public
and private credentials (e.g., key material).

I To authenticate, a LoginContext object is created, which
then consults a configuration to load the require
LoginModules. The login method is invoked for each
module, to try to authenticate a subject.

Authentication and Authorization (JAAS)

I JAAS has a pluggable architecture, so applications are
independent of underlying authentication methods:
implementation of authentication method is decided at
runtime, in a login configuration file.

I A Subject may have multiple identities, each of which is a
Principal (name). Subjects also own security-related public
and private credentials (e.g., key material).

I To authenticate, a LoginContext object is created, which
then consults a configuration to load the require
LoginModules. The login method is invoked for each
module, to try to authenticate a subject.

I Authorization happens when a subject is associated with a
thread’s AccessControlContext using the doAs methods
for performing actions (run methods of a
java.security.PrivilegedAction object). Then
principal-based entries in the current security policy are used.

Java security flaws

I Java was touted from the start as a secure mechanism for
mobile code. But it has suffered from flaws in both design
and implementation, surveyed in 1999 by McGraw and Felten
in Securing Java, see http://www.securingjava.com.

http://www.securingjava.com

Java security flaws

I Java was touted from the start as a secure mechanism for
mobile code. But it has suffered from flaws in both design
and implementation, surveyed in 1999 by McGraw and Felten
in Securing Java, see http://www.securingjava.com.

I Most fundamental are problems in the Byte Code Verifier,
which checks proper use of JVML (protecting against
“malicious” or merely buggy compilers):

http://www.securingjava.com

Java security flaws

I Java was touted from the start as a secure mechanism for
mobile code. But it has suffered from flaws in both design
and implementation, surveyed in 1999 by McGraw and Felten
in Securing Java, see http://www.securingjava.com.

I Most fundamental are problems in the Byte Code Verifier,
which checks proper use of JVML (protecting against
“malicious” or merely buggy compilers):

http://www.securingjava.com

Java security flaws

I Java was touted from the start as a secure mechanism for
mobile code. But it has suffered from flaws in both design
and implementation, surveyed in 1999 by McGraw and Felten
in Securing Java, see http://www.securingjava.com.

I Most fundamental are problems in the Byte Code Verifier,
which checks proper use of JVML (protecting against
“malicious” or merely buggy compilers):

I no operand stack overflow/underflow

http://www.securingjava.com

Java security flaws

I Java was touted from the start as a secure mechanism for
mobile code. But it has suffered from flaws in both design
and implementation, surveyed in 1999 by McGraw and Felten
in Securing Java, see http://www.securingjava.com.

I Most fundamental are problems in the Byte Code Verifier,
which checks proper use of JVML (protecting against
“malicious” or merely buggy compilers):

I no operand stack overflow/underflow
I correct types and conversions

http://www.securingjava.com

Java security flaws

I Java was touted from the start as a secure mechanism for
mobile code. But it has suffered from flaws in both design
and implementation, surveyed in 1999 by McGraw and Felten
in Securing Java, see http://www.securingjava.com.

I Most fundamental are problems in the Byte Code Verifier,
which checks proper use of JVML (protecting against
“malicious” or merely buggy compilers):

I no operand stack overflow/underflow
I correct types and conversions
I field accesses obey visibility modifiers

http://www.securingjava.com

Java security flaws

I Java was touted from the start as a secure mechanism for
mobile code. But it has suffered from flaws in both design
and implementation, surveyed in 1999 by McGraw and Felten
in Securing Java, see http://www.securingjava.com.

I Most fundamental are problems in the Byte Code Verifier,
which checks proper use of JVML (protecting against
“malicious” or merely buggy compilers):

I no operand stack overflow/underflow
I correct types and conversions
I field accesses obey visibility modifiers

http://www.securingjava.com

Java security flaws

I Java was touted from the start as a secure mechanism for
mobile code. But it has suffered from flaws in both design
and implementation, surveyed in 1999 by McGraw and Felten
in Securing Java, see http://www.securingjava.com.

I Most fundamental are problems in the Byte Code Verifier,
which checks proper use of JVML (protecting against
“malicious” or merely buggy compilers):

I no operand stack overflow/underflow
I correct types and conversions
I field accesses obey visibility modifiers

Type safety relies on byte code verification being correct.
Unfortunately getting this right is complicated. . .

http://www.securingjava.com

Java security flaws – continued

I The Java Language Specification is written in English. It
suffers from usual problems of large language specifications:
missing details, ambiguity, and other inaccuracies.

Java security flaws – continued

I The Java Language Specification is written in English. It
suffers from usual problems of large language specifications:
missing details, ambiguity, and other inaccuracies.

I Sun BUG ID 6360463 (Dec 05): “offset item of the stack map
frame” not defined in specification . . . “renders most of
discussion on type checking moot”

Java security flaws – continued

I The Java Language Specification is written in English. It
suffers from usual problems of large language specifications:
missing details, ambiguity, and other inaccuracies.

I Sun BUG ID 6360463 (Dec 05): “offset item of the stack map
frame” not defined in specification . . . “renders most of
discussion on type checking moot”

I Sun’s implementations are usually taken as the reference
behaviour. But these have had a series of type safety and
access control failings (from 1.x SDKs to J2ME in mobile
phone KVMs).

Java security flaws – continued

I The Java Language Specification is written in English. It
suffers from usual problems of large language specifications:
missing details, ambiguity, and other inaccuracies.

I Sun BUG ID 6360463 (Dec 05): “offset item of the stack map
frame” not defined in specification . . . “renders most of
discussion on type checking moot”

I Sun’s implementations are usually taken as the reference
behaviour. But these have had a series of type safety and
access control failings (from 1.x SDKs to J2ME in mobile
phone KVMs).

I 8th Feb 2006, CVE-2006-0614,0615,0617: Sun fixes seven
vulnerabilities in current JREs which allowed remote code to
bypass sandbox using reflection.

Java security flaws – continued

I The Java Language Specification is written in English. It
suffers from usual problems of large language specifications:
missing details, ambiguity, and other inaccuracies.

I Sun BUG ID 6360463 (Dec 05): “offset item of the stack map
frame” not defined in specification . . . “renders most of
discussion on type checking moot”

I Sun’s implementations are usually taken as the reference
behaviour. But these have had a series of type safety and
access control failings (from 1.x SDKs to J2ME in mobile
phone KVMs).

I 8th Feb 2006, CVE-2006-0614,0615,0617: Sun fixes seven
vulnerabilities in current JREs which allowed remote code to
bypass sandbox using reflection.

I This serves to point out the importance of defence in depth;
even if you have a carefully configured Java security policy
restricting what arbitrary downloaded code can do, you should
still beware untrusted code.

Outline

Web security

Java Security

Trusting code

Language futures for security

Palladium/TCPA/NGSCB/Trustworthy Computing

I Strong crypto built into PCs via a security chip with master
keys. PC boots, hashing BIOS, OS and application code.
Builds a chain of trust.

Palladium/TCPA/NGSCB/Trustworthy Computing

I Strong crypto built into PCs via a security chip with master
keys. PC boots, hashing BIOS, OS and application code.
Builds a chain of trust.

I Protection domains in OS are extended into hardware (secure
keyboard reading, sound channels). Idea to turn open system
into a closed architecture (cf XBox).

Palladium/TCPA/NGSCB/Trustworthy Computing

I Strong crypto built into PCs via a security chip with master
keys. PC boots, hashing BIOS, OS and application code.
Builds a chain of trust.

I Protection domains in OS are extended into hardware (secure
keyboard reading, sound channels). Idea to turn open system
into a closed architecture (cf XBox).

I Allows certificates, e.g. “this document was created with
version 1751 of Microsoft Word, running on NGSCB version
of Windows Vista, on 27th August 2006, on Dell Megaplex
ZZ5 serial no. 5091237896”. Files are stored encrypted and
cannot be decrypted on other machines.

Palladium/TCPA/NGSCB/Trustworthy Computing

I Strong crypto built into PCs via a security chip with master
keys. PC boots, hashing BIOS, OS and application code.
Builds a chain of trust.

I Protection domains in OS are extended into hardware (secure
keyboard reading, sound channels). Idea to turn open system
into a closed architecture (cf XBox).

I Allows certificates, e.g. “this document was created with
version 1751 of Microsoft Word, running on NGSCB version
of Windows Vista, on 27th August 2006, on Dell Megaplex
ZZ5 serial no. 5091237896”. Files are stored encrypted and
cannot be decrypted on other machines.

I Many uses. Strong anti-privacy measures. Business clients:
financial services, government, and healthcare. Home PC
users: reduction in spyware, digital rights management
(DRM). New uses: renting, lending, time-limited, etc.
Considerable controversy (Stallman: “Treacherous
Computing”).

Code signing: worth the bits?

I So far, we’re trusting code based on authentication of its
source (or maybe some security-verification agent). I’ll trust
updates to IE only if they’re signed by Microsoft.

Code signing: worth the bits?

I So far, we’re trusting code based on authentication of its
source (or maybe some security-verification agent). I’ll trust
updates to IE only if they’re signed by Microsoft.

I Code signing is better than trusting unauthenticated code: a
digital version of “shrink-wrapping” software with holographic
certificates. However, this trust is fallible:

Code signing: worth the bits?

I So far, we’re trusting code based on authentication of its
source (or maybe some security-verification agent). I’ll trust
updates to IE only if they’re signed by Microsoft.

I Code signing is better than trusting unauthenticated code: a
digital version of “shrink-wrapping” software with holographic
certificates. However, this trust is fallible:

1. Microsoft’s signing scheme may be compromised (this has
actually happened, by a infamous social engineering
attack on Verisign),

http://news.com.com/2100-1001-254586.html?legacy=cnet

Code signing: worth the bits?

I So far, we’re trusting code based on authentication of its
source (or maybe some security-verification agent). I’ll trust
updates to IE only if they’re signed by Microsoft.

I Code signing is better than trusting unauthenticated code: a
digital version of “shrink-wrapping” software with holographic
certificates. However, this trust is fallible:

1. Microsoft’s signing scheme may be compromised (this has
actually happened, by a infamous social engineering
attack on Verisign),

2. More seriously, the code might not be secure anyway, if
Microsoft fails to program securely, or virus/corruption occurs
before signing (also happened:
MS accidently distributed Nimda virus with VS .NET!)

http://news.com.com/2100-1001-254586.html?legacy=cnet
http://news.com.com/2100-1001-935994.html

Code signing: worth the bits?

I So far, we’re trusting code based on authentication of its
source (or maybe some security-verification agent). I’ll trust
updates to IE only if they’re signed by Microsoft.

I Code signing is better than trusting unauthenticated code: a
digital version of “shrink-wrapping” software with holographic
certificates. However, this trust is fallible:

1. Microsoft’s signing scheme may be compromised (this has
actually happened, by a infamous social engineering
attack on Verisign),

2. More seriously, the code might not be secure anyway, if
Microsoft fails to program securely, or virus/corruption occurs
before signing (also happened:
MS accidently distributed Nimda virus with VS .NET!)

I The problem is that we delegate trust to somebody else rather
than examining the code for ourselves. Examining the code
ourselves to prove that it is secure for us is a possible
solution, but hardly feasible. Or is it?

http://news.com.com/2100-1001-254586.html?legacy=cnet
http://news.com.com/2100-1001-935994.html

Future: Proof-carrying code?

I Ideally, we would certify code not to its origin, but with a
self-evident guarantee of security, to capture exactly what
we want. The client would check that the guarantee matches
the code, and that the guarantee meets local security policy,
so is safe to execute.

Future: Proof-carrying code?

I Ideally, we would certify code not to its origin, but with a
self-evident guarantee of security, to capture exactly what
we want. The client would check that the guarantee matches
the code, and that the guarantee meets local security policy,
so is safe to execute.

I This perhaps sounds far-fetched, but is the subject of current
research into proof-carrying code (PCC).

Future: Proof-carrying code?

I Ideally, we would certify code not to its origin, but with a
self-evident guarantee of security, to capture exactly what
we want. The client would check that the guarantee matches
the code, and that the guarantee meets local security policy,
so is safe to execute.

I This perhaps sounds far-fetched, but is the subject of current
research into proof-carrying code (PCC).

I Basic idea: give a mechanized proof that security properties
are met. The compiler and/or programmer adds annotations
to the code to express security-related invariants. These
annotations become the proof certificate that the code is
safe, and can be efficiently checked.

Future: Proof-carrying code?

I Ideally, we would certify code not to its origin, but with a
self-evident guarantee of security, to capture exactly what
we want. The client would check that the guarantee matches
the code, and that the guarantee meets local security policy,
so is safe to execute.

I This perhaps sounds far-fetched, but is the subject of current
research into proof-carrying code (PCC).

I Basic idea: give a mechanized proof that security properties
are met. The compiler and/or programmer adds annotations
to the code to express security-related invariants. These
annotations become the proof certificate that the code is
safe, and can be efficiently checked.

I In practice, the PCC protocol allows for some negotiation to
set security policy. It might also allow for the combination of
cryptographic and proof certificates. Theoretical work of
LFCS, Edinburgh from 80s–90s is being applied today in PCC.

Resource bounded code

The general framework of PCC is wide in scope: recent LFCS research inves-
tigated mobile resource guarantees, which are PCC certificates attesting
that a program will work within particular constraints on resources (time,
space, number of network connections, etc). Here is a picture of our scheme:

Virtual
M ac h in e

C o d e c w ith C e rtif ic ate p

R e s o urc e P o lic y r

R e s o urc e
T y p e c h e c k e r

C o m p ile r

R e s o urc e
M an ag e r

S o u r c e C o d e
P r o g r a m

C e rtif ic ate
G e n e rato r

 p i m p l i e s c
s a t i s f i e s r

Machine B

Machine A

Runs code c

P ro o f
c h e c k e r

http://lfcs.ed.ac.uk/mrg

Outline

Web security

Java Security

Trusting code

Language futures for security

Language-based security

An active research area: applying programming language theory,
designing new constructs and mechanisms.
Most work applies static analysis and extended type systems:

I Proof-carrying code (PCC), introduced above.

Language-based security

An active research area: applying programming language theory,
designing new constructs and mechanisms.
Most work applies static analysis and extended type systems:

I Proof-carrying code (PCC), introduced above.

I Cyclone, Vault and others.
Add richer, safer and more expressive typing and annotations
to existing languages. [take Advances in Programming

Langauges next year]

Language-based security

An active research area: applying programming language theory,
designing new constructs and mechanisms.
Most work applies static analysis and extended type systems:

I Proof-carrying code (PCC), introduced above.

I Cyclone, Vault and others.
Add richer, safer and more expressive typing and annotations
to existing languages. [take Advances in Programming

Langauges next year]

I Other security specialised typing includes:

Language-based security

An active research area: applying programming language theory,
designing new constructs and mechanisms.
Most work applies static analysis and extended type systems:

I Proof-carrying code (PCC), introduced above.

I Cyclone, Vault and others.
Add richer, safer and more expressive typing and annotations
to existing languages. [take Advances in Programming

Langauges next year]

I Other security specialised typing includes:
I detecting and preventing illegal information flows

Language-based security

An active research area: applying programming language theory,
designing new constructs and mechanisms.
Most work applies static analysis and extended type systems:

I Proof-carrying code (PCC), introduced above.

I Cyclone, Vault and others.
Add richer, safer and more expressive typing and annotations
to existing languages. [take Advances in Programming

Langauges next year]

I Other security specialised typing includes:
I detecting and preventing illegal information flows
I ensuring authentication before authorisation

Language-based security

An active research area: applying programming language theory,
designing new constructs and mechanisms.
Most work applies static analysis and extended type systems:

I Proof-carrying code (PCC), introduced above.

I Cyclone, Vault and others.
Add richer, safer and more expressive typing and annotations
to existing languages. [take Advances in Programming

Langauges next year]

I Other security specialised typing includes:
I detecting and preventing illegal information flows
I ensuring authentication before authorisation
I fixing patterns of access control, e.g. close file after opening.

References

Mark G. Graff and Kenneth R. van Wyk.

Secure Coding: Principles & Practices.

O’Reilly, 2003.

Sverre H. Huseby.

Innocent Code: a security wake-up call for web programmers.

Wiley.

Gary McGraw.

Securing Java.

John Wiley & Sons, 1999.

John Viega and Matt Messier.

Secure Programming Cookbook for C and C++.

O’Reilly, 2003.

	Outline
	Web security
	Java Security
	Trusting code
	Language futures for security

