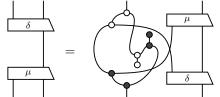
Categories and Quantum Informatics mock exam

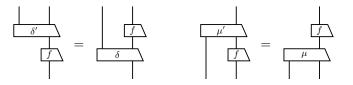
Question 1

In a symmetric monoidal dagger category C, suppose that (M, Ψ, ϕ) is a commutative dagger-Frobenius monoid, and (M, ϕ, δ) is a dagger-Frobenius monoid, which together are strongly complementary. Then we can build a new monoidal category $\mathbf{X}_{\mathbf{C}}$ in the following way:

Objects are triples (A, μ, δ), where A is an object of C, carrying a dagger-comodule structure A → M ⊗ A for (M, Ψ, φ), and a dagger-module structure M ⊗ A → A for (M, Δ, δ), satisfying the following compatibility equation:



• Morphisms $(A, \mu, \delta) \rightarrow (A', \mu', \delta')$ are morphisms $A \xrightarrow{f} A'$ in **C**, satisfying:



Composition is as in C.

• **Tensor product** of morphisms is inherited from C, and of objects is defined as:

$$\left(A, \bigsqcup{\mu}{\mu}, \bigsqcup{\delta}{\lambda}\right) \otimes \left(A', \bigsqcup{\mu'}{\mu}, \bigsqcup{\delta'}{\lambda}\right) \quad := \quad \left(A \otimes A', \bigsqcup{\mu}{\mu}, \bigsqcup{\delta}{\lambda'}{\lambda}\right)$$

This construction is important in some models of topological quantum computation.

(a)

The description of the monoidal structure given above is not complete. Find a unit object I and natural isomorphisms α , λ and ρ that make $\mathbf{X}_{\mathbf{C}}$ into a monoidal category.

(b)

Show that X_C is a monoidal dagger category, with the dagger of a morphism given by its dagger as a morphism in C.

(c)

For any two objects (A, μ, δ) and (A', μ', δ') of **X**_C, define a morphism in **C** as follows:

$$\sigma_{(A,\mu,\delta),(A',\mu',\delta')} := \underbrace{\begin{vmatrix} \mu' \\ \delta \\ \delta \end{vmatrix}}$$

Show that this is unitary.

(d)

Show that for any two objects (A, μ, δ) , (A', μ', δ') of $\mathbf{X}_{\mathbf{C}}$, the morphism $\sigma_{(A,\mu,\delta),(A',\mu',\delta')}$ gives a morphism in $\mathbf{X}_{\mathbf{C}}$ of type $(A, \mu, \delta) \otimes (A', \mu', \delta') \rightarrow (A', \mu', \delta') \otimes (A, \mu, \delta)$.

(e)

Show that the morphisms $\sigma_{(A,\mu,\delta),(A',\mu',\delta')}$ make $\mathbf{X}_{\mathbf{C}}$ into a braided monoidal dagger category.

(f)

Let $\mathbf{C} = \mathbf{Rel}$. Take $M = \mathbb{Z}_2 = \{0, 1\}$, and define \bigstar and \diamondsuit as follows, where '+' is addition modulo 2, for all $x, y \in M$:

$$(x, x) \sim x \\ (x, y) \sim x + y$$

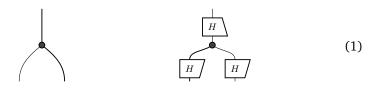
Show that this is a strongly complementary pair. Take $A = \mathbb{Z}_2$, and define $\mu : M \otimes A \rightarrow A$ and $\delta : A \rightarrow M \otimes A$ as follows, for all $a \in A$:

$$\mu \colon (x,a) \sim x + a$$
$$\delta \colon a \sim (1,a)$$

Show that (A, μ, δ) is an object of $\mathbf{X}_{\mathbf{Rel}}$. Compute $\sigma_{(A, \mu, \delta), (A, \mu, \delta)}$ explicitly, and hence show that $\mathbf{X}_{\mathbf{Rel}}$ is not symmetric monoidal.

Question 2

This question is about using complementary structures to model Shor's quantum error correction protocol. Let A be an object in a dagger compact category, carrying a classical structure written \bigstar . Let $H : A \rightarrow A$ be a unitary morphism such that the following morphisms define complementary classical structures, up to a scalar factor:



(a)

Show that the following composite is unitary, up to a scalar factor:

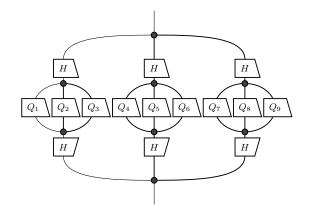
(b)

Supposing that $P : A \to A$ satisfies $P \circ A = A \circ (id_A \otimes P) = A \circ (P \otimes id_A)$, show that the following is equal to the identity, up to a scalar factor:

(c)

Let $Q_i : A \to A$ for $1 \le i \le 9$ be a family of morphisms, such that Q_i equals the identity for at least 7 values of *i*. Show that the following is equal to the

identity, up to a scalar factor:



(4)