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Overview

» Completely positive maps:
pure states/evolutions vs mixed ones

» Categories of completely positive maps:

everything happily in one category

» Classical structures:
operational view, broadcasting
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Mixed states

Suppose machine produces quantum systems with Hilbert space H.
Two buttons: one produces state v € H, another w € H.

You receive the system, but can’t see machine operating.
All you know is: coin flip decides which button to press.

State can’t be described by element of H: it is mixed.
A density matrix on a Hilbert space H is a positive map H > H.

» normalized when Tr(p) = 1.

» pure when p = |¢))(¢| for some ) € H; otherwise mixed.
Partial trace is unique map Trx: Hilb(H ® K,H ® K) — Hilb(H,H)
satisfying Trx(p ® o) = Tr(o) - p.

Partial trace of pure state can be mixed.



Mixed measurements

positive operator-valued measure (POVM) on a Hilbert space H is a
family of positive maps H %, Y with Yoifi=idy
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Mixed measurements

positive operator-valued measure (POVM) on a Hilbert space H is a
family of positive maps H %, Y with Yoifi=idy

Born rule: for positive operator-valued measure {f;} and normalized
density matrix H % H, the probability of outcome i is (1)|f:|1)).
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So far have defined pure state as morphism I -% A.



Mixed states, categorically

Will now develop mixed states categorically, in 4 steps.
So far have defined pure state as morphism I -% A.

Step 1: consider p =aoa': A— A instead of I % A.
This is really just a switch of perspective: we can recover a from p up
to a phase, which is physically unimportant.



Mixed states, categorically

Step 2: switch from

A

7

Instead of A— A, may take names [ — A* ® A, so no information lost.
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Mixed states, categorically

Step 2: switch from

A

7

Instead of A— A, may take names [ — A* ® A, so no information lost.

A positive matrix is a morphism I ™ A* ® A that is the name "ff o ™
of a positive morphism for some A J, B. 1f we can choose B = I, we
call m a pure state.

Will sometimes write y/m for f to indicate that m has a ‘square root’
and is hence positive. However, y/m is by no means unique.



Mixed states, categorically

Step 3: move from positive matrix I ™ A* ® A to multiplication
A* @ A— A* ® A on left with m; compare Cayley embedding.
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Mixed states, categorically
Step 3: move from positive matrix I ™ A* ® A to multiplication

A* @ A— A* ® A on left with m; compare Cayley embedding.
AN
4 4 %I A
Loses no information:

In FHilb, if a morphism I ™ A* ® A satisfies
AA

-

>
> >

then it is a positive matrix.



Mixed states, categorically

Step 4: Recognize pants, upgrade to arbitrary Frobenius structure.

A mixed state of a dagger Frobenius structure (A, 4,,4) in a monoidal
dagger category is a morphism I ™ A with

b4

for some object X and some morphism A > X.
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Mixed states, categorically

Step 4: Recognize pants, upgrade to arbitrary Frobenius structure.

A mixed state of a dagger Frobenius structure (A, 4,,4) in a monoidal
dagger category is a morphism I ™ A with

b4

for some object X and some morphism A > X.

[~ el f->

b

Will sometimes write ¢/m instead of g, even though not unique.



Examples of mixed states

» Recall pair of pants on A = C" in FHilb is n-by-n matrices.
Mixed states are n-by-n matrices m satisfying m = vm' o /m for
some n-by-m matrix /m: precisely density matrices.
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Examples of mixed states

» Recall pair of pants on A = C" in FHilb is n-by-n matrices.
Mixed states are n-by-n matrices m satisfying m = vm' o /m for
some n-by-m matrix /m: precisely density matrices.

» Dagger Frobenius structures in FHilb are finite-dimensional
C*-algebras A. Mixed states I — A are elements a € A satisfying
a = b*b for some b € A; usually called the positive elements.

» Special dagger Frobenius structure in Rel correspond to
groupoids G. Mixed states are subsets R closed under inverses,
and such that g € R implies idgom(g) € R.
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What are the morphisms?

Individual morphisms are physical processes; free or controlled time
evolution, preparation, or measurement. Should take (mixed) states
to (mixed) states, be determined by behaviour on (mixed) states.
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What are the morphisms?

Individual morphisms are physical processes; free or controlled time
evolution, preparation, or measurement. Should take (mixed) states
to (mixed) states, be determined by behaviour on (mixed) states.

Let (A, 4,,%) and (B, &,,¢) be dagger Frobenius structures in dagger
monoidal category. A positive map is morphism A L, B such that
1£°™, B is mixed state when I ™ A is mixed state.

Warning: different from positive-semidefinite morphisms f = gf o g,
abbreviated to positive morphisms.
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Completely positive maps

Not yet the ‘right’ morphisms: forgot compound systems!
If f and g are physical channels, then sois f ® g.
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Completely positive maps

Not yet the ‘right’ morphisms: forgot compound systems!
If f and g are physical channels, then sois f ® g.

Specifically, f ® idg should be positive map for any Frobenius
structure E and any positive map A 1, B. Might only be interested in
A, but can never be sure it’s isolated from environment E.

Let (A, 4, %) and (B, &, ¢) be dagger Frobenius structures in a dagger
monoidal category. Completely positive map is morphism A 1, B with
f ®idg is positive map for any dagger Frobenius structure (E, &, é).
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Examples of completely positive maps

Completely positive maps in FHilb:

» Unitary evolution: letting an n-by-n matrix m evolve freely
along unitary u to uf o m o u; can phrase it as A* ® A =% A* @ A
forA=C".
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Examples of completely positive maps

Completely positive maps in FHilb:

» Unitary evolution: letting an n-by-n matrix m evolve freely
along unitary u to uf o m o u; can phrase it as A* ® A =% A* @ A
forA=C".

» Measurement: if A P2P% A is a POVM, then |i) ~ p; is
completely positive C" 2> A* © A. Conversely, if p completely
positive map preserving units, {p(|1)),...,p(|n))} is POVM.

Let G and H be the sets of morphisms of groupoids G and H. A
relation G — H is completely positive if and only if it respects
inverses: g ~ h implies g~ ~ h™! and idgom(g) ~ iddom(n)-
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Categories of completely positive maps

Definition of completely positive map was operational,
will now reformulate in structural form.
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Categories of completely positive maps

Definition of completely positive map was operational,
will now reformulate in structural form.

Need category to be positive monoidal: f ® idg > 0 = f > 0.

Lemma: In a positively monoidal braided dagger category, if
f: (A6 — (B,4,é) is completely positive, then

A B AB
¢ |

= X

0 ¢ |
A B AB

for some object X and some morphism A ® B -4 X.

This is called the CP-condition.



Categories of completely positive maps
Proof. Let E = A ® A* be pair of pants, define I ™ A ® E as:

A A A

2
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Categories of completely positive maps
Proof. Let E = A ® A* be pair of pants, define I ™ A ® E as:

A A A
@
A®E A A A A

. y iV
-4 -4
AQE \ \AA >A

A A A A

Then m is a mixed state:
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Categories of completely positive maps
Since f is completely positive, so (f @ idg) o m is a mixed state:

B A A

B A A BAA

for some object Y and morphism h.
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Categories of completely positive maps
Since f is completely positive, so (f @ idg) o m is a mixed state:

B A A

B A A

for some object Y and morphism h. Hence:

A B A A B A

\
AN =@ -

A B A ABA
CP-condition then follows from positively monoidal.



The CP condition

A B
¢ |
= X
¢ |
AB

Striking similarity to oracles, Frobenius law.

Object X is also called the ancilla system.
Map g is called a Kraus morphism, written {’/f although not unique.

Will now prove converse; need to show CP-condition well-behaved.
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CP maps compose
Lemma: In a monoidal dagger category, let (A, 4,,%), (B,&,¢), and
(C, 4, é) be special dagger Frobenius structures. If A2+ B and B-%: C
satisfy the CP condition, so does gof.
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CP maps compose

Lemma: In a monoidal dagger category, let (A, 4,,%), (B,&,¢), and
(C, 4, é) be special dagger Frobenius structures. If A2+ B and B-%: C

satisfy the CP condition, so does gof.
Proof. Since f and g satisfy the CP condition:

g
) - L
:

Then we perform the following calculation:




Tensor products of CP maps

Lemma: If (A, 4,8) L5 (B, 4, ¢) and (C, &,6) 5> (D, 4, ¢) are maps
between dagger Frobenius structures in a braided monoidal dagger
category that satlsfy CP—CODdlthl‘l then so is

(A,4,8) ® (C,,8) T (B, 4,6) © (D, 4,).
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Tensor products of CP maps

Lemma: If (A, 4, ) (B, 4,¢) and (C,4,6) 5> (D, 4, é) are maps
between dagger Frobenius structures in a braided monoidal dagger
category that satlsfy CP—condltlon then so is

(A, 8) @ (C,8,0) L% (B, ,6) @ (D, 4,8).

Proof. Suppose ¢/f and /g are Kraus morphisms for f and g. Then:

\
- [ [l
-
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Stinespring’s theorem

Theorem: Let (A, 4,,¢) and (B, 4,,¢) be special dagger Frobenius
structures, A - B morphism in braided monoidal dagger category
that is positively monoidal. The following are equivalent:

(a) f is completely positive;
(b) f ® idg is positive map for all E = (X* ® X, /\,v);
(c) f satisfies the CP-condition.
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Stinespring’s theorem

Theorem: Let (A, 4,,¢) and (B, 4,,¢) be special dagger Frobenius
structures, A - B morphism in braided monoidal dagger category
that is positively monoidal. The following are equivalent:

(a) f is completely positive;
(b) f ® idg is positive map for all E = (X* ® X, /\,v);
(c) f satisfies the CP-condition.

Proof. (a) = (b) clear; (b) = (c) already shown; (c) = (a) follows
from previous two lemmas.

O
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The CP construction

Turn compact dagger category C modeling pure states into new
compact dagger category CP[C] of mixed states.

Let C be a monoidal dagger category. Define a new category CP[C]| as
follows: objects are special dagger Frobenius structures in C, and
morphisms are completely positive maps.



CP preserves tensors

If C is a braided monoidal dagger category, then CP[C] is a monoidal
category:
» the tensor product of objects is product comonoid;

v

the tensor product of morphisms is well-defined by lemma;

v

the tensor unit is I with multiplication I ® I 2T and unit I Ads, 1 ;
» the coherence isomorphisms «, A, and p are inherited from C.
If C is a symmetric monoidal category, then so is CP[C].



CP preserves tensors

If C is a braided monoidal dagger category, then CP[C] is a monoidal
category:
» the tensor product of objects is product comonoid;

v

the tensor product of morphisms is well-defined by lemma;

v

the tensor unit is I with multiplication I ® I 2T and unit I Ads, 1 ;
» the coherence isomorphisms «, A, and p are inherited from C.
If C is a symmetric monoidal category, then so is CP[C].

Proof. If C symmetric, swap maps are CP by Frobenius:

Hence, in that case, CP[C| is symmetric monoidal. O
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Let (A, 4, %) and (B, 4,,¢) be special dagger Frobenius structures in a
braided Itnonoidal dagger category. If A~ B satisfies CP-condition, so
does BL5 A,



CP preserves daggers

Let (A, 4, %) and (B, 4,,¢) be special dagger Frobenius structures in a
braided ITnonoidal dagger category. If A~ B satisfies CP-condition, so
does BL5 A,

Proof.




CP preserves duals
Let (A, 4, %) be a special dagger Frobenius structure in a braided
monoidal dagger category C, and:

Ao e

Then (A, 6,8) - (A, 4, ¢) in CP[C].



CP preserves duals
Let (A, 4, %) be a special dagger Frobenius structure in a braided
monoidal dagger category C, and:

/‘\=@ Iy

Then (A, 4,,4) - (A, 4, é) in CP[C].
Proof. Define v := =\¢ I—R®L.

M- M- T

Also ™ :=2&: L®R—1Iis CP.
Because composition in CP[C]| is as in C, snake equations come down
precisely to the Frobenius law. Thus L - R in CP[C]. O
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CP summary

C | CP[C]

monoidal dagger category category

braided monoidal dagger category monoidal category right duals
symmetric monoidal dagger category | compact category

compact dagger category compact dagger category



CP summary

C | CP[C]

monoidal dagger category category

braided monoidal dagger category monoidal category right duals
symmetric monoidal dagger category | compact category

compact dagger category compact dagger category

Examples:
» CP[FHilb]: fin-dim C*-algebras and completely positive maps
» CP[Rel]: groupoids and inverse-respecting relations



Classical structures

If C is braided monoidal dagger, then category CP.[C]| has:
» as objects classical structures in C
» as morphisms completely positive maps.

If C is compact, so is CP.[C]; any object in CP.[C] is self-dual.

If C models pure state quantum mechanics, and CP[C] mixed state
quantum mechanics, then CP.[C] models statistical mechanics.



Stochastic matrices

CP.[FHilb] is monoidally equivalent to:
» objects are natural numbers

» morphisms are m-by-n matrices of nonnegative real entries

Maps that preserve counit are matrices whose rows sum to one:

stochastic matrices.



Stochastic matrices

CP.[FHilb] is monoidally equivalent to:
» objects are natural numbers
» morphisms are m-by-n matrices of nonnegative real entries

Maps that preserve counit are matrices whose rows sum to one:
stochastic matrices.

Consistent with comomonoid homomorphisms of classical structures:

» every column has single entry 1 and Os elsewhere

» deterministic maps within stochastic setting



Broadcasting

Compact dagger categories have no uniform copying/deleting.
However, doesn’t yet mean they model quantum mechanics.

» classical mechanics might have copying
» quantum mechanics might not have copying
» but statistical mechanics has no copying either

Rather: impossibility of broadcasting unknown mixed states.



Broadcasting

Compact dagger categories have no uniform copying/deleting.
However, doesn’t yet mean they model quantum mechanics.

» classical mechanics might have copying

» quantum mechanics might not have copying

» but statistical mechanics has no copying either
Rather: impossibility of broadcasting unknown mixed states.
First make sure that there exist ‘discarding’ maps A — I in CP|[C]:

Lemma: Let (A, ¢) be dagger Frobenius structure in braided
monoidal dagger category C. Then ¢ is completely positive. If
(A, 4, ¢) is classical structure, then & is completely positive.

Proof. Verifying CP condition for é is easy. CP condition for

commutative &, rewrites into positive form using spider theorem.



No broadcasting

Let C be braided monoidal dagger category. A broadcasting map for
object (A, 4, 6) of CP[C] is morphism A £+ A ® A in CP[C] satisfying:

Object (A, &,¢) is broadcastable if it allows a broadcasting map.

Note: concerns just single object, so weaker than uniform copying.



No broadcasting in FHilb

Let C be a braided monoidal dagger category. Classical structures are
broadcastable objects in CP[C].

Proof. \¢’ satisfies CP condition. O
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» In FHilb converse holds: no-broadcasting theorem.
So dagger Frobenius structure broadcastable iff classical
structure.



No broadcasting in FHilb

Let C be a braided monoidal dagger category. Classical structures are
broadcastable objects in CP[C].

Proof. \¢’ satisfies CP condition. O

» In FHilb converse holds: no-broadcasting theorem.
So dagger Frobenius structure broadcastable iff classical
structure.

» Not so in Rel! Call category totally disconnected when only
morphisms are endomorphisms.



Broadcasting in Rel

Broadcastable objects in CP[Rel] are totally disconnected groupoids.

Proof. If G totally disconnected, then G 2> G x G given by

B = {(g’ (lddom )) ‘ IS G)} U {(g7 (g, 1ddom )) | g€ G}

is broadcasting map.

Converse: use that broadcasting means

{(:8) g€ Gt = {(gh)]| (g (ideoan),h)) € B}
= {(gh) | (g (h,idgomm))) € B}



Summary

» Completely positive maps:
pure states/evolutions vs mixed ones

» Categories of completely positive maps:

everything happily in one category

» Classical structures:
operational view, broadcasting
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