Categories and Quantum Informatics Week 8: Complete positivity

Chris Heunen

Overview

- Completely positive maps: pure states/evolutions vs mixed ones
- Categories of completely positive maps: everything happily in one category
- Classical structures: operational view, broadcasting

Suppose machine produces quantum systems with Hilbert space *H*.

Suppose machine produces quantum systems with Hilbert space *H*. Two buttons: one produces state $v \in H$, another $w \in H$.

You receive the system, but can't see machine operating. All you know is: coin flip decides which button to press.

Suppose machine produces quantum systems with Hilbert space *H*. Two buttons: one produces state $v \in H$, another $w \in H$.

You receive the system, but can't see machine operating. All you know is: coin flip decides which button to press.

State can't be described by element of *H*: it is *mixed*.

Suppose machine produces quantum systems with Hilbert space *H*. Two buttons: one produces state $v \in H$, another $w \in H$.

You receive the system, but can't see machine operating. All you know is: coin flip decides which button to press.

State can't be described by element of *H*: it is *mixed*.

A density matrix on a Hilbert space *H* is a positive map $H \xrightarrow{\rho} H$.

• normalized when $Tr(\rho) = 1$.

Suppose machine produces quantum systems with Hilbert space *H*. Two buttons: one produces state $v \in H$, another $w \in H$.

You receive the system, but can't see machine operating. All you know is: coin flip decides which button to press.

State can't be described by element of *H*: it is *mixed*.

A density matrix on a Hilbert space *H* is a positive map $H \xrightarrow{\rho} H$.

- normalized when $Tr(\rho) = 1$.
- pure when $\rho = |\psi\rangle\langle\psi|$ for some $\psi \in H$; otherwise mixed.

Suppose machine produces quantum systems with Hilbert space *H*. Two buttons: one produces state $v \in H$, another $w \in H$.

You receive the system, but can't see machine operating. All you know is: coin flip decides which button to press.

State can't be described by element of *H*: it is *mixed*.

A density matrix on a Hilbert space *H* is a positive map $H \xrightarrow{\rho} H$.

- normalized when $Tr(\rho) = 1$.
- pure when $\rho = |\psi\rangle\langle\psi|$ for some $\psi \in H$; otherwise mixed.

Partial trace is unique map Tr_K : $\operatorname{Hilb}(H \otimes K, H \otimes K) \rightarrow \operatorname{Hilb}(H, H)$ satisfying $\operatorname{Tr}_K(\rho \otimes \sigma) = \operatorname{Tr}(\sigma) \cdot \rho$.

Partial trace of pure state can be mixed.

positive operator-valued measure (POVM) on a Hilbert space *H* is a family of positive maps $H \xrightarrow{f_i} H$ with $\sum_i f_i = id_H$

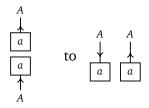
positive operator-valued measure (POVM) on a Hilbert space *H* is a family of positive maps $H \xrightarrow{f_i} H$ with $\sum_i f_i = id_H$

Born rule: for positive operator–valued measure $\{f_i\}$ and normalized density matrix $H \xrightarrow{\rho} H$, the *probability of outcome i* is $\langle \psi | f_i | \psi \rangle$.

Will now develop mixed states *categorically*, in 4 steps. So far have defined *pure state* as morphism $I \xrightarrow{a} A$. Will now develop mixed states *categorically*, in 4 steps. So far have defined *pure state* as morphism $I \xrightarrow{a} A$.

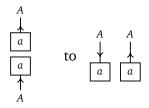
Step 1: consider $p = a \circ a^{\dagger} : A \to A$ instead of $I \xrightarrow{a} A$. This is really just a switch of perspective: we can recover *a* from *p* up to a phase, which is physically unimportant.

Step 2: switch from



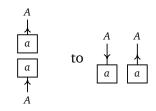
Instead of $A \rightarrow A$, may take names $I \rightarrow A^* \otimes A$, so no information lost.

Step 2: switch from



Instead of $A \to A$, may take names $I \to A^* \otimes A$, so no information lost. A positive matrix is a morphism $I \xrightarrow{m} A^* \otimes A$ that is the name $\lceil f^{\dagger} \circ f \rceil$ of a positive morphism for some $A \xrightarrow{f} B$. If we can choose B = I, we call *m* a pure state.

Step 2: switch from

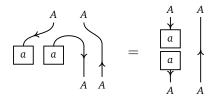


Instead of $A \rightarrow A$, may take names $I \rightarrow A^* \otimes A$, so no information lost.

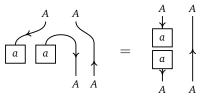
A positive matrix is a morphism $I \xrightarrow{m} A^* \otimes A$ that is the name $\lceil f^{\dagger} \circ f \rceil$ of a positive morphism for some $A \xrightarrow{f} B$. If we can choose B = I, we call *m* a pure state.

Will sometimes write \sqrt{m} for *f* to indicate that *m* has a 'square root' and is hence positive. However, \sqrt{m} is by no means unique.

Step 3: move from positive matrix $I \xrightarrow{m} A^* \otimes A$ to multiplication $A^* \otimes A \rightarrow A^* \otimes A$ on left with *m*; compare Cayley embedding.

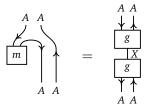


Step 3: move from positive matrix $I \xrightarrow{m} A^* \otimes A$ to multiplication $A^* \otimes A \rightarrow A^* \otimes A$ on left with *m*; compare Cayley embedding.



Loses no information:

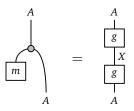
In **FHilb**, if a morphism $I \xrightarrow{m} A^* \otimes A$ satisfies



then it is a positive matrix.

Step 4: Recognize pants, upgrade to arbitrary Frobenius structure.

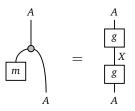
A mixed state of a dagger Frobenius structure $(A, , \diamond, \delta)$ in a monoidal dagger category is a morphism $I \xrightarrow{m} A$ with



for some object *X* and some morphism $A \xrightarrow{g} X$.

Step 4: Recognize pants, upgrade to arbitrary Frobenius structure.

A mixed state of a dagger Frobenius structure (A, \diamond, \diamond) in a monoidal dagger category is a morphism $I \xrightarrow{m} A$ with



for some object *X* and some morphism $A \xrightarrow{g} X$.

Will sometimes write $\sqrt[6]{m}$ instead of *g*, even though not unique.

Examples of mixed states

▶ Recall pair of pants on A = Cⁿ in FHilb is *n*-by-*n* matrices.
 Mixed states are *n*-by-*n* matrices *m* satisfying m = √m[†] ∘ √m for some *n*-by-*m* matrix √m: precisely density matrices.

Examples of mixed states

- ▶ Recall pair of pants on A = Cⁿ in FHilb is *n*-by-*n* matrices.
 Mixed states are *n*-by-*n* matrices *m* satisfying m = √m[†] ∘ √m for some *n*-by-*m* matrix √m: precisely density matrices.
- ▶ Dagger Frobenius structures in **FHilb** are finite-dimensional C*-algebras *A*. Mixed states $I \rightarrow A$ are elements $a \in A$ satisfying $a = b^*b$ for some $b \in A$; usually called the positive elements.

Examples of mixed states

- Recall pair of pants on A = Cⁿ in FHilb is *n*-by-*n* matrices.
 Mixed states are *n*-by-*n* matrices *m* satisfying m = √m[†] ∘ √m for some *n*-by-*m* matrix √m: precisely density matrices.
- ▶ Dagger Frobenius structures in **FHilb** are finite-dimensional C*-algebras *A*. Mixed states $I \rightarrow A$ are elements $a \in A$ satisfying $a = b^*b$ for some $b \in A$; usually called the positive elements.
- ▶ Special dagger Frobenius structure in **Rel** correspond to groupoids **G**. Mixed states are subsets *R* closed under inverses, and such that $g \in R$ implies $id_{dom(g)} \in R$.

What are the morphisms?

Individual morphisms are physical processes; free or controlled time evolution, preparation, or measurement. Should take (mixed) states to (mixed) states, be determined by behaviour on (mixed) states.

What are the morphisms?

Individual morphisms are physical processes; free or controlled time evolution, preparation, or measurement. Should take (mixed) states to (mixed) states, be determined by behaviour on (mixed) states.

Let (A, \bigstar, \diamond) and (B, \bigstar, \diamond) be dagger Frobenius structures in dagger monoidal category. A positive map is morphism $A \xrightarrow{f} B$ such that $I \xrightarrow{f \circ m} B$ is mixed state when $I \xrightarrow{m} A$ is mixed state.

What are the morphisms?

Individual morphisms are physical processes; free or controlled time evolution, preparation, or measurement. Should take (mixed) states to (mixed) states, be determined by behaviour on (mixed) states.

Let (A, \bigstar, \diamond) and (B, \bigstar, \diamond) be dagger Frobenius structures in dagger monoidal category. A positive map is morphism $A \xrightarrow{f} B$ such that $I \xrightarrow{f \circ m} B$ is mixed state when $I \xrightarrow{m} A$ is mixed state.

Warning: different from *positive-semidefinite* morphisms $f = g^{\dagger} \circ g$, abbreviated to *positive morphisms*.

Completely positive maps

Not yet the 'right' morphisms: forgot compound systems! If *f* and *g* are physical channels, then so is $f \otimes g$.

Completely positive maps

Not yet the 'right' morphisms: forgot compound systems! If *f* and *g* are physical channels, then so is $f \otimes g$.

Specifically, $f \otimes id_E$ should be positive map for any Frobenius structure E and any positive map $A \xrightarrow{f} B$. Might only be interested in A, but can never be sure it's isolated from environment E.

Let (A, \diamond, \diamond) and (B, \diamond, \diamond) be dagger Frobenius structures in a dagger monoidal category. Completely positive map is morphism $A \xrightarrow{f} B$ with $f \otimes id_E$ is positive map for any dagger Frobenius structure (E, \diamond, \diamond) .

Completely positive maps in FHilb:

▶ Unitary evolution: letting an *n*-by-*n* matrix *m* evolve freely along unitary *u* to $u^{\dagger} \circ m \circ u$; can phrase it as $A^* \otimes A \xrightarrow{u_* \otimes u} A^* \otimes A$ for $A = \mathbb{C}^n$.

Completely positive maps in FHilb:

- ▶ Unitary evolution: letting an *n*-by-*n* matrix *m* evolve freely along unitary *u* to $u^{\dagger} \circ m \circ u$; can phrase it as $A^* \otimes A \xrightarrow{u_* \otimes u} A^* \otimes A$ for $A = \mathbb{C}^n$.
- ► Measurement: if $A \xrightarrow{p_1,...,p_n} A$ is a POVM, then $|i\rangle \mapsto p_i$ is completely positive $\mathbb{C}^n \xrightarrow{p} A^* \otimes A$.

Completely positive maps in FHilb:

- ▶ Unitary evolution: letting an *n*-by-*n* matrix *m* evolve freely along unitary *u* to $u^{\dagger} \circ m \circ u$; can phrase it as $A^* \otimes A \xrightarrow{u_* \otimes u} A^* \otimes A$ for $A = \mathbb{C}^n$.
- ► Measurement: if A ^{p₁,...,p_n}/_p A is a POVM, then |i⟩ → p_i is completely positive Cⁿ ^p/_p A* ⊗ A. Conversely, if p completely positive map preserving units, {p(|1⟩),...,p(|n⟩)} is POVM.

Completely positive maps in FHilb:

- ▶ Unitary evolution: letting an *n*-by-*n* matrix *m* evolve freely along unitary *u* to $u^{\dagger} \circ m \circ u$; can phrase it as $A^* \otimes A \xrightarrow{u_* \otimes u} A^* \otimes A$ for $A = \mathbb{C}^n$.
- ► Measurement: if A p_1,...,p_n A is a POVM, then |i⟩ → p_i is completely positive Cⁿ A* ⊗ A. Conversely, if p completely positive map preserving units, {p(|1⟩),...,p(|n⟩)} is POVM.

Let *G* and *H* be the sets of morphisms of groupoids **G** and **H**. A relation $G \rightarrow H$ is completely positive if and only if it respects inverses: $g \sim h$ implies $g^{-1} \sim h^{-1}$ and $id_{dom(g)} \sim id_{dom(h)}$.

Definition of completely positive map was *operational*, will now reformulate in *structural* form.

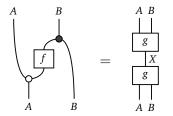
Definition of completely positive map was *operational*, will now reformulate in *structural* form.

Need category to be positive monoidal: $f \otimes id_E \ge 0 \implies f \ge 0$.

Definition of completely positive map was *operational*, will now reformulate in *structural* form.

Need category to be positive monoidal: $f \otimes id_E \ge 0 \implies f \ge 0$.

Lemma: In a positively monoidal braided dagger category, if $f: (A, \diamond, \diamond) \rightarrow (B, \bullet, \bullet)$ is completely positive, then

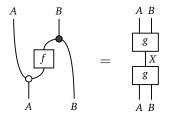


for some object *X* and some morphism $A \otimes B \xrightarrow{g} X$.

Definition of completely positive map was *operational*, will now reformulate in *structural* form.

Need category to be positive monoidal: $f \otimes id_E \ge 0 \implies f \ge 0$.

Lemma: In a positively monoidal braided dagger category, if $f: (A, \diamond, \diamond) \rightarrow (B, \bullet, \bullet)$ is completely positive, then

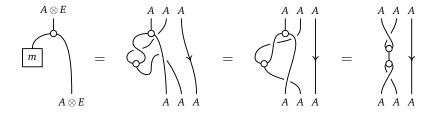


for some object *X* and some morphism $A \otimes B \xrightarrow{g} X$. This is called the CP–condition.

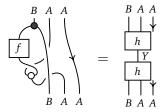
Proof. Let $E = A \otimes A^*$ be pair of pants, define $I \xrightarrow{m} A \otimes E$ as:

Proof. Let $E = A \otimes A^*$ be pair of pants, define $I \xrightarrow{m} A \otimes E$ as:

Then m is a mixed state:

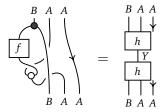


Since *f* is completely positive, so $(f \otimes id_E) \circ m$ is a mixed state:

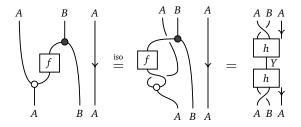


for some object Y and morphism h.

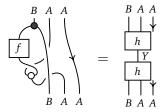
Since *f* is completely positive, so $(f \otimes id_E) \circ m$ is a mixed state:



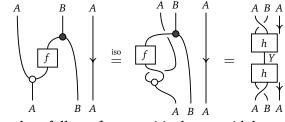
for some object *Y* and morphism *h*. Hence:



Since *f* is completely positive, so $(f \otimes id_E) \circ m$ is a mixed state:

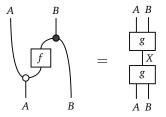


for some object *Y* and morphism *h*. Hence:



CP-condition then follows from positively monoidal.

The CP condition



Striking similarity to oracles, Frobenius law.

Object *X* is also called the ancilla system.

Map g is called a Kraus morphism, written $\sqrt[6]{f}$ although not unique.

Will now prove converse; need to show CP-condition well-behaved.

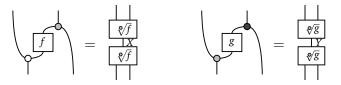
CP maps compose

Lemma: In a monoidal dagger category, let $(A, \measuredangle, \flat)$, $(B, \measuredangle, \flat)$, and (C, \bigstar, \flat) be special dagger Frobenius structures. If $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ satisfy the CP condition, so does $g \circ f$.

CP maps compose

Lemma: In a monoidal dagger category, let $(A, \measuredangle, \flat)$, $(B, \measuredangle, \flat)$, and (C, \bigstar, \flat) be special dagger Frobenius structures. If $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ satisfy the CP condition, so does $g \circ f$.

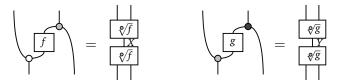
Proof. Since *f* and *g* satisfy the CP condition:



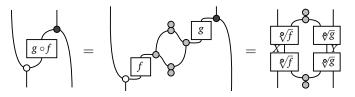
CP maps compose

Lemma: In a monoidal dagger category, let $(A, \measuredangle, \flat)$, $(B, \measuredangle, \flat)$, and (C, \bigstar, \flat) be special dagger Frobenius structures. If $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ satisfy the CP condition, so does $g \circ f$.

Proof. Since *f* and *g* satisfy the CP condition:



Then we perform the following calculation:



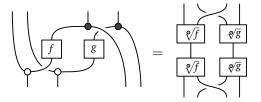
Tensor products of CP maps

Lemma: If $(A, \diamond, \diamond) \xrightarrow{f} (B, \diamond, \bullet)$ and $(C, \diamond, \diamond) \xrightarrow{g} (D, \diamond, \bullet)$ are maps between dagger Frobenius structures in a braided monoidal dagger category that satisfy CP-condition, then so is $(A, \diamond, \diamond) \otimes (C, \diamond, \diamond) \xrightarrow{f \otimes g} (B, \diamond, \diamond) \otimes (D, \diamond, \diamond).$

Tensor products of CP maps

Lemma: If $(A, \diamond, \diamond) \xrightarrow{f} (B, \diamond, \bullet)$ and $(C, \diamond, \diamond) \xrightarrow{g} (D, \diamond, \bullet)$ are maps between dagger Frobenius structures in a braided monoidal dagger category that satisfy CP-condition, then so is $(A, \diamond, \diamond) \otimes (C, \diamond, \diamond) \xrightarrow{f \otimes g} (B, \diamond, \diamond) \otimes (D, \diamond, \diamond).$

Proof. Suppose $\sqrt[q]{f}$ and $\sqrt[q]{g}$ are Kraus morphisms for *f* and *g*. Then:



Stinespring's theorem

Theorem: Let (A, \diamond, \diamond) and (B, \diamond, \diamond) be special dagger Frobenius structures, $A \xrightarrow{f} B$ morphism in braided monoidal dagger category that is positively monoidal. The following are equivalent:

- (a) *f* is completely positive;
- (b) $f \otimes id_E$ is positive map for all $E = (X^* \otimes X, A, \smile)$;
- (c) f satisfies the CP–condition.

Stinespring's theorem

Theorem: Let (A, \diamond, \diamond) and (B, \diamond, \diamond) be special dagger Frobenius structures, $A \xrightarrow{f} B$ morphism in braided monoidal dagger category that is positively monoidal. The following are equivalent:

- (a) *f* is completely positive;
- (b) $f \otimes id_E$ is positive map for all $E = (X^* \otimes X, / , \lor);$
- (c) f satisfies the CP-condition.

Proof. (a) \Rightarrow (b) clear; (b) \Rightarrow (c) already shown; (c) \Rightarrow (a) follows from previous two lemmas.

Turn compact dagger category C modeling pure states into new compact dagger category CP[C] of mixed states.

Let **C** be a monoidal dagger category. Define a new category CP[C] as follows: objects are special dagger Frobenius structures in **C**, and morphisms are completely positive maps.

CP preserves tensors

If ${\bf C}$ is a braided monoidal dagger category, then ${\rm CP}[{\bf C}]$ is a monoidal category:

- the tensor product of objects is product comonoid;
- the tensor product of morphisms is well-defined by lemma;
- the tensor unit is *I* with multiplication $I \otimes I \xrightarrow{\rho_I} I$ and unit $I \xrightarrow{\operatorname{id}_I} I$;
- the coherence isomorphisms α , λ , and ρ are inherited from **C**.

If \mathbf{C} is a symmetric monoidal category, then so is $CP[\mathbf{C}]$.

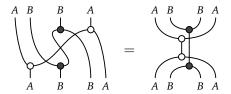
CP preserves tensors

If ${\bf C}$ is a braided monoidal dagger category, then ${\rm CP}[{\bf C}]$ is a monoidal category:

- the tensor product of objects is product comonoid;
- the tensor product of morphisms is well-defined by lemma;
- the tensor unit is *I* with multiplication $I \otimes I \xrightarrow{\rho_I} I$ and unit $I \xrightarrow{\operatorname{id}_I} I$;
- the coherence isomorphisms α , λ , and ρ are inherited from **C**.

If \mathbf{C} is a symmetric monoidal category, then so is $CP[\mathbf{C}]$.

Proof. If C symmetric, swap maps are CP by Frobenius:



Hence, in that case, CP[C] is symmetric monoidal.

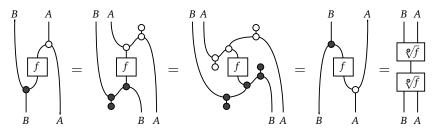
CP preserves daggers

Let (A, \bigstar, \diamond) and (B, \bigstar, \bullet) be special dagger Frobenius structures in a braided monoidal dagger category. If $A \xrightarrow{f} B$ satisfies CP–condition, so does $B \xrightarrow{f^{\dagger}} A$.

CP preserves daggers

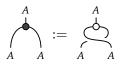
Let (A, \diamond, \diamond) and (B, \diamond, \bullet) be special dagger Frobenius structures in a braided monoidal dagger category. If $A \xrightarrow{f} B$ satisfies CP–condition, so does $B \xrightarrow{f^{\dagger}} A$.

Proof.



CP preserves duals

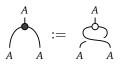
Let (A, A, b) be a special dagger Frobenius structure in a braided monoidal dagger category **C**, and:



Then $(A, \diamond, \diamond) \dashv (A, \diamond, \bullet)$ in $CP[\mathbf{C}]$.

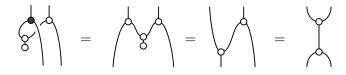
CP preserves duals

Let (A, \diamond, δ) be a special dagger Frobenius structure in a braided monoidal dagger category **C**, and:



Then $(A, \diamond, \diamond) \dashv (A, \bullet, \bullet)$ in CP[C].

Proof. Define $\succ := \checkmark : I \rightarrow R \otimes L$.



 $\stackrel{A}{\downarrow} := \stackrel{A}{\downarrow}$

Also $\succ := A : L \otimes R \to I$ is CP.

Because composition in $CP[\mathbf{C}]$ is as in \mathbf{C} , snake equations come down precisely to the Frobenius law. Thus $L \dashv R$ in $CP[\mathbf{C}]$.

CP summary

C	$CP[\mathbf{C}]$
monoidal dagger category	category
braided monoidal dagger category	monoidal category right duals
symmetric monoidal dagger category	compact category
compact dagger category	compact dagger category

CP summary

С	$\operatorname{CP}[\mathbf{C}]$
monoidal dagger category	category
braided monoidal dagger category	monoidal category right duals
symmetric monoidal dagger category	compact category
compact dagger category	compact dagger category

Examples:

- ► CP[FHilb]: fin-dim C*-algebras and completely positive maps
- ► CP[**Rel**]: groupoids and inverse-respecting relations

Classical structures

If \boldsymbol{C} is braided monoidal dagger, then category $\text{CP}_{c}[\boldsymbol{C}]$ has:

- ► as objects classical structures in **C**
- as morphisms completely positive maps.

If **C** is compact, so is $CP_c[C]$; any object in $CP_c[C]$ is self-dual.

If **C** models pure state quantum mechanics, and $CP[\mathbf{C}]$ mixed state quantum mechanics, then $CP_c[\mathbf{C}]$ models statistical mechanics.

Stochastic matrices

 $CP_c[FHilb]$ is monoidally equivalent to:

- objects are natural numbers
- ▶ morphisms are *m*-by-*n* matrices of nonnegative real entries

Maps that preserve counit are matrices whose rows sum to one: stochastic matrices.

Stochastic matrices

 $CP_c[FHilb]$ is monoidally equivalent to:

- objects are natural numbers
- ▶ morphisms are *m*-by-*n* matrices of nonnegative real entries

Maps that preserve counit are matrices whose rows sum to one: stochastic matrices.

Consistent with comomonoid homomorphisms of classical structures:

- every column has single entry 1 and 0s elsewhere
- deterministic maps within stochastic setting

Broadcasting

Compact dagger categories have no uniform copying/deleting. However, doesn't yet mean they model quantum mechanics.

- classical mechanics might have copying
- quantum mechanics might not have copying
- but statistical mechanics has no copying either

Rather: impossibility of broadcasting unknown mixed states.

Broadcasting

Compact dagger categories have no uniform copying/deleting. However, doesn't yet mean they model quantum mechanics.

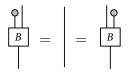
- classical mechanics might have copying
- quantum mechanics might not have copying
- but statistical mechanics has no copying either

Rather: impossibility of broadcasting unknown mixed states. First make sure that there exist 'discarding' maps $A \rightarrow I$ in CP[**C**]: **Lemma:** Let (A, \diamond, \diamond) be dagger Frobenius structure in braided monoidal dagger category **C**. Then \diamond is completely positive. If (A, \diamond, \diamond) is classical structure, then \diamond is completely positive. **Proof.** Verifying CP condition for \diamond is easy. CP condition for

commutative A rewrites into positive form using spider theorem.

No broadcasting

Let **C** be braided monoidal dagger category. A broadcasting map for object (A, \diamond, \diamond) of $CP[\mathbf{C}]$ is morphism $A \xrightarrow{B} A \otimes A$ in $CP[\mathbf{C}]$ satisfying:



Object $(A, \blacktriangle, \delta)$ is broadcastable if it allows a broadcasting map.

Note: concerns just single object, so weaker than uniform copying.

No broadcasting in FHilb

Let ${\bf C}$ be a braided monoidal dagger category. Classical structures are broadcastable objects in ${\rm CP}[{\bf C}].$

Proof. \forall satisfies CP condition.

No broadcasting in FHilb

Let C be a braided monoidal dagger category. Classical structures are broadcastable objects in CP[C].

Proof. ∀ satisfies CP condition.

In FHilb converse holds: no-broadcasting theorem. So dagger Frobenius structure broadcastable iff classical structure.

No broadcasting in FHilb

Let C be a braided monoidal dagger category. Classical structures are broadcastable objects in CP[C].

Proof. ∀ satisfies CP condition.

- In FHilb converse holds: no-broadcasting theorem.
 So dagger Frobenius structure broadcastable iff classical structure.
- Not so in Rel! Call category totally disconnected when only morphisms are endomorphisms.

Broadcasting in Rel

Broadcastable objects in CP[**Rel**] are totally disconnected groupoids. **Proof.** If **G** totally disconnected, then $G \xrightarrow{B} G \times G$ given by

$$B = \{ \left(g, (\mathrm{id}_{\mathrm{dom}(g)}, g) \right) \mid g \in G) \} \cup \{ \left(g, (g, \mathrm{id}_{\mathrm{dom}(g)}) \right) \mid g \in G \}$$

is broadcasting map.

Converse: use that broadcasting means

$$\begin{array}{rcl} \{(g,g) \mid g \in G\} & = & \{(g,h) \mid (g,(\mathrm{id}_{\mathrm{cod}(h)},h)) \in B\} \\ & = & \{(g,h) \mid (g,(h,\mathrm{id}_{\mathrm{dom}(h)})) \in B\}. \end{array}$$

Summary

Completely positive maps: pure states/evolutions vs mixed ones

 Categories of completely positive maps: everything happily in one category

 Classical structures: operational view, broadcasting