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Overview

I Completely positive maps:
pure states/evolutions vs mixed ones

I Categories of completely positive maps:
everything happily in one category

I Classical structures:
operational view, broadcasting
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Mixed states

Suppose machine produces quantum systems with Hilbert space H.

Two buttons: one produces state v ∈ H, another w ∈ H.

You receive the system, but can’t see machine operating.
All you know is: coin flip decides which button to press.

State can’t be described by element of H: it is mixed.

A density matrix on a Hilbert space H is a positive map H ρ H.
I normalized when Tr(ρ) = 1.
I pure when ρ = |ψ〉〈ψ| for some ψ ∈ H; otherwise mixed.

Partial trace is unique map TrK : Hilb(H ⊗ K,H ⊗ K) Hilb(H,H)
satisfying TrK(ρ⊗ σ) = Tr(σ) · ρ.

Partial trace of pure state can be mixed.
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Mixed measurements

positive operator-valued measure (POVM) on a Hilbert space H is a
family of positive maps H fi H with

∑
i fi = idH

Born rule: for positive operator–valued measure {fi} and normalized
density matrix H ρ H, the probability of outcome i is 〈ψ|fi|ψ〉.
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Mixed states, categorically

Will now develop mixed states categorically, in 4 steps.
So far have defined pure state as morphism I a A.

Step 1: consider p = a ◦ a† : A A instead of I a A.
This is really just a switch of perspective: we can recover a from p up
to a phase, which is physically unimportant.

5 / 31



Mixed states, categorically

Will now develop mixed states categorically, in 4 steps.
So far have defined pure state as morphism I a A.

Step 1: consider p = a ◦ a† : A A instead of I a A.
This is really just a switch of perspective: we can recover a from p up
to a phase, which is physically unimportant.

5 / 31



Mixed states, categorically

Step 2: switch from

A

A

a

a
to

A A

aa

Instead of A A, may take names I A∗ ⊗ A, so no information lost.

A positive matrix is a morphism I m A∗ ⊗ A that is the name pf † ◦ fq
of a positive morphism for some A f B. If we can choose B = I, we
call m a pure state.

Will sometimes write
√

m for f to indicate that m has a ‘square root’
and is hence positive. However,

√
m is by no means unique.
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Mixed states, categorically
Step 3: move from positive matrix I m A∗ ⊗ A to multiplication
A∗ ⊗ A A∗ ⊗ A on left with m; compare Cayley embedding.

A A

AA

a a =

A

A A

A

a

a

Loses no information:

In FHilb, if a morphism I m A∗ ⊗ A satisfies

A A

AA

m = X

A A

A A

g

g

then it is a positive matrix.
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Mixed states, categorically

Step 4: Recognize pants, upgrade to arbitrary Frobenius structure.

A mixed state of a dagger Frobenius structure (A, , ) in a monoidal
dagger category is a morphism I m A with

A

A

m
=

A

A

X

g

g

for some object X and some morphism A g X.

Will sometimes write
√

m instead of g, even though not unique.
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Examples of mixed states

I Recall pair of pants on A = Cn in FHilb is n-by-n matrices.
Mixed states are n-by-n matrices m satisfying m =

√
m† ◦

√
m for

some n-by-m matrix
√

m: precisely density matrices.

I Dagger Frobenius structures in FHilb are finite-dimensional
C*-algebras A. Mixed states I A are elements a ∈ A satisfying
a = b∗b for some b ∈ A; usually called the positive elements.

I Special dagger Frobenius structure in Rel correspond to
groupoids G. Mixed states are subsets R closed under inverses,
and such that g ∈ R implies iddom(g) ∈ R.
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What are the morphisms?

Individual morphisms are physical processes; free or controlled time
evolution, preparation, or measurement. Should take (mixed) states
to (mixed) states, be determined by behaviour on (mixed) states.

Let (A, , ) and (B, , ) be dagger Frobenius structures in dagger
monoidal category. A positive map is morphism A f B such that
I f◦m B is mixed state when I m A is mixed state.

Warning: different from positive-semidefinite morphisms f = g† ◦ g,
abbreviated to positive morphisms.
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Completely positive maps

Not yet the ‘right’ morphisms: forgot compound systems!
If f and g are physical channels, then so is f ⊗ g.

Specifically, f ⊗ idE should be positive map for any Frobenius
structure E and any positive map A f B. Might only be interested in
A, but can never be sure it’s isolated from environment E.

Let (A, , ) and (B, , ) be dagger Frobenius structures in a dagger
monoidal category. Completely positive map is morphism A f B with
f ⊗ idE is positive map for any dagger Frobenius structure (E, , ).
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Examples of completely positive maps

Completely positive maps in FHilb:

I Unitary evolution: letting an n-by-n matrix m evolve freely
along unitary u to u† ◦m ◦ u; can phrase it as A∗ ⊗ A u∗⊗u A∗ ⊗ A
for A = Cn.

I Measurement: if A p1,...,pn A is a POVM, then |i〉 7→ pi is
completely positive Cn p A∗ ⊗ A. Conversely, if p completely
positive map preserving units, {p(|1〉), . . . , p(|n〉)} is POVM.

Let G and H be the sets of morphisms of groupoids G and H. A
relation G H is completely positive if and only if it respects
inverses: g ∼ h implies g−1 ∼ h−1 and iddom(g) ∼ iddom(h).
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Categories of completely positive maps

Definition of completely positive map was operational,
will now reformulate in structural form.

Need category to be positive monoidal: f ⊗ idE ≥ 0 =⇒ f ≥ 0.

Lemma: In a positively monoidal braided dagger category, if
f : (A, , ) (B, , ) is completely positive, then

B

A B

A

f = X

A B

A B

g

g

for some object X and some morphism A⊗ B g X.

This is called the CP–condition.
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Categories of completely positive maps
Proof. Let E = A⊗ A∗ be pair of pants, define I m A⊗ E as:

AA A

Then m is a mixed state:

A⊗ E

A⊗ E

m =

A A

A A

A

A

=

A A

A A

A

A

=

AA

AA A

A
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Categories of completely positive maps
Since f is completely positive, so (f ⊗ idE) ◦m is a mixed state:

B

A

A

A

A

B

f
= Y

AB A

AB A

h

h

for some object Y and morphism h.

Hence:

B

A B

A

A

A

f iso
=

B

B A

AA

A

f = Y

B A

B

A

A A

h

h

CP–condition then follows from positively monoidal.
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The CP condition

B

A B

A

f = X

A B

A B

g

g

Striking similarity to oracles, Frobenius law.

Object X is also called the ancilla system.
Map g is called a Kraus morphism, written

√
f although not unique.

Will now prove converse; need to show CP–condition well-behaved.
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CP maps compose
Lemma: In a monoidal dagger category, let (A, , ), (B, , ), and
(C, , ) be special dagger Frobenius structures. If A f B and B g C
satisfy the CP condition, so does g ◦ f .

Proof. Since f and g satisfy the CP condition:

f = X

√
f√
f

g = Y

√
g

√
g

Then we perform the following calculation:

g ◦ f =
f

g

= X Y

√
f√
f

√
g

√
g
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Tensor products of CP maps

Lemma: If (A, , )
f
(B, , ) and (C, , )

g
(D, , ) are maps

between dagger Frobenius structures in a braided monoidal dagger
category that satisfy CP–condition, then so is
(A, , )⊗ (C, , )

f⊗g
(B, , )⊗ (D, , ).

Proof. Suppose
√

f and
√

g are Kraus morphisms for f and g. Then:

f g =

√
f

√
f

√
g

√
g
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Stinespring’s theorem

Theorem: Let (A, , ) and (B, , ) be special dagger Frobenius
structures, A f B morphism in braided monoidal dagger category
that is positively monoidal. The following are equivalent:

(a) f is completely positive;

(b) f ⊗ idE is positive map for all E = (X∗ ⊗ X, , );

(c) f satisfies the CP–condition.

Proof. (a)⇒ (b) clear; (b)⇒ (c) already shown; (c)⇒ (a) follows
from previous two lemmas.
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The CP construction

Turn compact dagger category C modeling pure states into new
compact dagger category CP[C] of mixed states.

Let C be a monoidal dagger category. Define a new category CP[C] as
follows: objects are special dagger Frobenius structures in C, and
morphisms are completely positive maps.
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CP preserves tensors
If C is a braided monoidal dagger category, then CP[C] is a monoidal
category:

I the tensor product of objects is product comonoid;
I the tensor product of morphisms is well-defined by lemma;
I the tensor unit is I with multiplication I ⊗ I ρI I and unit I idI I;
I the coherence isomorphisms α, λ, and ρ are inherited from C.

If C is a symmetric monoidal category, then so is CP[C].

Proof. If C symmetric, swap maps are CP by Frobenius:

A B

B AA B

B A

=

A B B A

A B B A

Hence, in that case, CP[C] is symmetric monoidal.
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CP preserves daggers

Let (A, , ) and (B, , ) be special dagger Frobenius structures in a
braided monoidal dagger category. If A f B satisfies CP–condition, so
does B f† A.

Proof.

B

AB

A

f =

A

A

B

B

f =

A

A

B

B

f =

B

AB

A

f =

B A

B A

√
f

√
f
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Proof.
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CP preserves duals
Let (A, , ) be a special dagger Frobenius structure in a braided
monoidal dagger category C, and:

A

AA

:=

A

A A

A
:=

A

Then (A, , ) a (A, , ) in CP[C].

Proof. Define := : I R⊗ L.

= = =

Also := : L⊗ R I is CP.
Because composition in CP[C] is as in C, snake equations come down
precisely to the Frobenius law. Thus L a R in CP[C].
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CP summary

C CP[C]
monoidal dagger category category
braided monoidal dagger category monoidal category right duals
symmetric monoidal dagger category compact category
compact dagger category compact dagger category

Examples:
I CP[FHilb]: fin-dim C*-algebras and completely positive maps
I CP[Rel]: groupoids and inverse-respecting relations
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Classical structures

If C is braided monoidal dagger, then category CPc[C] has:
I as objects classical structures in C
I as morphisms completely positive maps.

If C is compact, so is CPc[C]; any object in CPc[C] is self-dual.

If C models pure state quantum mechanics, and CP[C] mixed state
quantum mechanics, then CPc[C] models statistical mechanics.
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Stochastic matrices

CPc[FHilb] is monoidally equivalent to:
I objects are natural numbers
I morphisms are m-by-n matrices of nonnegative real entries

Maps that preserve counit are matrices whose rows sum to one:
stochastic matrices.

Consistent with comomonoid homomorphisms of classical structures:

I every column has single entry 1 and 0s elsewhere
I deterministic maps within stochastic setting
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Broadcasting

Compact dagger categories have no uniform copying/deleting.
However, doesn’t yet mean they model quantum mechanics.

I classical mechanics might have copying
I quantum mechanics might not have copying
I but statistical mechanics has no copying either

Rather: impossibility of broadcasting unknown mixed states.

First make sure that there exist ‘discarding’ maps A I in CP[C]:

Lemma: Let (A, , ) be dagger Frobenius structure in braided
monoidal dagger category C. Then is completely positive. If
(A, , ) is classical structure, then is completely positive.

Proof. Verifying CP condition for is easy. CP condition for
commutative rewrites into positive form using spider theorem.
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No broadcasting

Let C be braided monoidal dagger category. A broadcasting map for
object (A, , ) of CP[C] is morphism A B A⊗ A in CP[C] satisfying:

B = = B

Object (A, , ) is broadcastable if it allows a broadcasting map.

Note: concerns just single object, so weaker than uniform copying.
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No broadcasting in FHilb

Let C be a braided monoidal dagger category. Classical structures are
broadcastable objects in CP[C].

Proof. satisfies CP condition.

I In FHilb converse holds: no-broadcasting theorem.
So dagger Frobenius structure broadcastable iff classical
structure.

I Not so in Rel! Call category totally disconnected when only
morphisms are endomorphisms.
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Broadcasting in Rel

Broadcastable objects in CP[Rel] are totally disconnected groupoids.

Proof. If G totally disconnected, then G B G× G given by

B = {
(
g, (iddom(g), g)

)
| g ∈ G)} ∪ {

(
g, (g, iddom(g))

)
| g ∈ G}

is broadcasting map.

Converse: use that broadcasting means

{(g, g) | g ∈ G} = {(g, h) | (g, (idcod(h), h)) ∈ B}
= {(g, h) | (g, (h, iddom(h))) ∈ B}.
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Summary

I Completely positive maps:
pure states/evolutions vs mixed ones

I Categories of completely positive maps:
everything happily in one category

I Classical structures:
operational view, broadcasting
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