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Up to now, we have only considered categorical models of pure states. But if we really want to take
grouping systems together seriously as a primitive notion, we should also care about mixed states. This means
we have to add another layer of structure to our categories. This chapter studies a beautiful construction
with which we don’t have to step outside the realm of compact dagger categories after all, and brings together
all the material from previous chapters. It revolves around completely positive maps.

Section 7.1 first abstracts this notion from standard quantum theory to the categorical setting. In
Section 7.2, we then reformulate such morphisms into a convenient condition, and present the central CP
construction. In the resulting categories, classical and quantum systems live on equal footing. We also
prove an abstract version of Stinespring’s theorem, characterizing completely positive maps in operational
terms. Subsequently we consider the subcategory containing only classical systems. Section 7.3 considers
no-broadcasting theorems as mixed versions of the no-cloning theorem of Section 4.2.

7.1 Completely positive maps

In this section we investigate evolution of mixed states of systems, by which we mean procedures that send
mixed states to mixed states. First, we define mixed states themselves, and then extrapolate. It turns
out that the evolutions we are after correspond to completely positive maps, and mixed states are simply
completely positive maps from the tensor unit I to a system.

Mixed states

So far we have defined a pure state as a morphism I a A. To eventually arrive at a definition of mixed state
that makes sense in arbitrary compact dagger categories, we proceed in four steps.

The first step is to consider the induced morphism p = a ◦ a† : A A instead of I a A. This is really
just a switch of perspective, as we can recover a from p up to a physically unimportant phase.

The second step is to switch from

A

A

a

a
to

A∗ A

aa

(7.1)

Instead of a morphism A A in a compact dagger category, we may equivalently work with matrices
I A∗ ⊗A by taking names (see Definition 3.3). That is, a matrix is a state on A∗ ⊗A. So no information
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is lost in this step; morphisms of the form A a◦a† A turn out to correspond to certain so-called positive
matrices I m A∗ ⊗A.

Definition 7.1 (Positive matrix, pure state). A positive matrix is a morphism I m A∗⊗A that is the name
pf† ◦ fq of a positive morphism for some A

f
B. If we can choose B = I, we call m a pure state.

We will sometimes write
√
m for f to indicate that m has a ‘square root’ and is hence positive. However,

notice that such a morphism
√
m is by no means unique.

Example 7.2. In our example categories:

� Positive matrices in FHilb come down to linear maps C Mn that send 1 to a positive matrix f ∈Mn;
use Example 4.12. Pure states correspond to positive matrices of rank at most 1, that is, those of the
form |a〉〈a| for a vector a ∈ Cn. This is precisely what we called a pure state in Hilbert space quantum
mechanics.

� Positive matrices I A× A in Rel come down to subsets R ⊆ A× A that are symmetric and satisfy
aRa when aRb. The pure states are of the form R = X ×X ⊆ A×A for subsets X ⊆ A.

So far we have merely reformulated pure states. We now generalise from pure states to mixed states. The
final two steps of our process reformulate and generalize this further.

The third step is a conceptual leap, that moves from the positive matrix I m A∗ ⊗ A to the map
A∗ ⊗ A A∗ ⊗ A that multiplies on the left with the matrix m; compare also the Cayley embedding of
Proposition 4.13:

A∗ A

AA∗

a a =

A∗

A∗ A

A

a

a
(7.2)

This morphism is clearly positive. The following lemma shows the converse, so that this reformulation again
loses no information.

Lemma 7.3. If a morphism I m A∗ ⊗A in FHilb satisfies

A∗A

AA∗

m = X

A∗A

A∗A

g

g

(7.3)

then it is a positive matrix.

Proof. For any morphism H
f
H in FHilb, it follows from the Kronecker product (30) that f ⊗ idK is

a block diagonal matrix; the dim(K) many diagonal blocks are simply the matrix of f . Hence f ⊗ idK is
diagonalizable precisely when f is (and dim(K) > 0), and the eigenvalues of f ⊗ idK are simply (dim(K)
many copies of) the eigenvalues of f . In particular, if dim(K) > 0 then f ⊗ idK is positive precisely when f
is. Thus if (7.3) holds, then m = pfq for some positive morphism f , making m a positive matrix.
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In the fourth and final step, we recognize in the left-hand sides of (7.2) and (7.3) the multiplication of
the pair of pants monoid (see Lemma 5.9). Upgrade the pair of pants to an arbitrary Frobenius structure
multiplication to obtain the generalization:

A

A

m

We have arrived at our definition of a mixed state.

Definition 7.4 (Mixed state). A mixed state of a dagger Frobenius structure (A, , ) in a monoidal dagger
category is a morphism I m A satisfying

A

A

m
=

A

A

X

g

g

(7.4)

for some object X and some morphism A
g
X.

We will sometimes write
√
m instead of g, even though it is not unique.

Example 7.5. In our example categories:

� Recall from Example 4.12 that the pair of pants monoid on A = Cn in FHilb is precisely the algebra

of n-by-n matrices. The mixed states come down to n-by-n matrices m satisfying m =
√
m
† ◦
√
m for

some n-by-m matrix
√
m. Those are precisely the mixed states, or density matrices.

In general, recall from Theorem 5.29 dagger Frobenius structures in FHilb correspond to finite-
dimensional operator algebras A. The mixed states I A come down to those elements a ∈ A
satisfying a = b∗b for some b ∈ A; these are usually called the positive elements.

� Recall from Theorem 5.37 that special dagger Frobenius structure in Rel correspond to groupoids G.
Mixed states come down to subsets R of the morphisms of G such that the relation defined by g ∼ h
if and only if h = r ◦ g for some r ∈ R is positive. This boils down to: R is closed under inverses, and
if g ∈ R, then also iddom(g) ∈ R.

Completely positive maps

As we have seen in Sections 5.3 and 5.4, we may think of Frobenius structures as comprising observables,
i.e. self-adjoint operators A A. In this section we will develop the accompanying notion of morphism.
Individual morphisms are regarded as physical processes, such as free or controlled time evolution,
preparation, or measurement. They should therefore take (mixed) states to (mixed) states, and be completely
determined by their behaviour on (mixed) states. Such morphisms are abbreviated to positive maps, because
they preserve positive elements; just as a linear map is one that preserves linear combinations.

Definition 7.6 (Positive map). Let (A, , ) and (B, , ) be dagger Frobenius structures in a dagger
monoidal category. A positive map is a morphism A

f
B such that I

f◦m
B is a mixed state whenever

I m A is a mixed state.
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Warning: note the difference with positive-semidefinite morphisms f = g† ◦ g, that we have abbreviated to
positive morphisms in Definition 2.11; luckily contexts will hardly arise where it’s difficult to differentiate
between the two notions.

Instead of mixed states I m A and morphisms A
f
B, we could dualize to effects A I and morphisms

B
f†

A. Rather than f mapping states to states, f† will map effects to effects in the other direction. This
is the difference between the Schrödinger picture and the Heisenberg picture. In the former, observables stay
fixed, while states evolve over time. In the latter, states stay fixed, while observables (effects) evolve over
time. Although both pictures are equivalent, we will mostly adhere to the Schrödinger one.

However, positive maps are not yet the ‘right’ morphisms, precisely because they forget about the main
premise of this book: always take compound systems into account! If f and g are physical channels, then
we would like f ⊗ g to be a physical channel, too. Specifically, we would like f ⊗ idE to be a positive map
for any Frobenius structure E and any positive map A

f
B. We might only be interested in the system A,

but we can never be completely sure that we have isolated it from the environment E. To account for the
dynamics of such open systems we have to use so-called completely positive maps.

Definition 7.7 (Completely positive map). Let (A, , ) and (B, , ) be dagger Frobenius structures in
a dagger monoidal category. A completely positive map is a morphism A

f
B such that f ⊗ idE is a positive

map for any dagger Frobenius structure (E, , ).

The next two subsections investigate the completely positive maps in our example categories FHilb and
Rel.

Evolution and measurement

In the category FHilb, Definition 7.7 is precisely the traditional definition of completely positive maps; that’s
how we engineered it. They bring evolution, measurement, and preparation on an equal footing.

Example 7.8. The following are completely positive maps in FHilb:

� Unitary evolution: letting an n-by-n matrix m evolve freely along a unitary u to u†◦m◦u is a completely
positive map. With Example 4.12 we can phrase it as the map A∗ ⊗ A u∗⊗u A∗ ⊗ A, from a pair of
pants Frobenius structure to itself, where A = Cn.

� Let A
p1,...,pn A form a projection-valued measure with n outcomes. Then the function Cn A∗ ⊗A

that sends the computational basis vector |i〉 to pi is a completely positive map, from the classical
structure Cn to the pair of pants Frobenius structure A∗ ⊗A.

Note the direction: that of the Heisenberg picture. In Lemma 7.21 below, we will see that the choice
of direction is arbitrary.

� More generally, if A
p1,...,pn A is a positive operator-valued measure, |i〉 7→ pi is still a completely

positive map Cn A∗ ⊗A.

In fact, the converse holds, too: if Cn p
A∗ ⊗ A is a completely positive map that preserves units,

then {p(|1〉), . . . , p(|n〉)} is a positive operator-valued measure. Hence a completely positive map from
a classical structure to a pair of pants Frobenius structure corresponds to a measurement.

� A completely positive map C A∗ ⊗ A is precisely (the preparation of) a mixed state. This example
generalizes to arbitrary braided monoidal dagger categories.

� More generally, suppose we would like to prepare one of n mixed states A
mi A, depending on some

input parameter i = 1, . . . , n. We can phrase this as the map Cn A∗⊗A given by |i〉 7→ mi, which is
completely positive. We can therefore regard a completely positive map from a classical structure to a
pair of pants Frobenius structure, as a controlled preparation.
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Inverse-respecting relations

In our other running example, the category Rel of sets and relations, special dagger Frobenius structures
correspond to groupoids by Theorem 5.37. Just like completely positive maps in FHilb only care about
positivity, and not the multiplication of the involved Frobenius structure, completely positive maps in Rel
only care about inverses, and not the multiplication of the groupoids.

Definition 7.9 (Inverse-respecting relation). Let G and H be the sets of morphisms of groupoids G and H.
A relation G R H is said to respect inverses when gRh implies g−1Rh−1 and iddom(g)Riddom(h).

Proposition 7.10. A morphism G R H in the category Rel is completely positive if and only if it respects
inverses.

Proof. First assume R respects inverses. Let K be any groupoid; write G,H,K for the sets of morphisms of
G,H,K. Suppose S ⊆ G×K that is a mixed state, that is, by Example 7.5, that S is closed under inverses
and identities. Then (R × id) ◦ S is {(h, k) ∈ H ×K | ∃g ∈ G : (g, k) ∈ S, (g, k) ∈ R}. This is clearly closed
under inverses and identities again, so R is completely positive.

Conversely, suppose R is completely positive. Take K = G, and let a
g
b be a morphism in G. Define

S = {(g, g), (g−1, g−1), (ida, ida), (idb, idb)}. This is a mixed state, hence so is (R× id) ◦ S, which equals

{(h, g) | gRh} ∪ {(h, g−1) | g−1Rh} ∪ {(h, ida) | idaRh} ∪ {(h, idb) | idbRh}.

If gRh, it follows that g−1Rh−1, and idaRiddom(h), so R respects inverses.

The characterisation of completely positive maps in Rel of the previous proposition is the source of
many ways in which Rel differs from FHilb. In other words, even though we have sketched Rel as a
model of ‘possibilistic quantum mechanics’, it is a nonstandard model of quantum mechanics. It provides
counterexamples to many features that are sometimes thought to be quantum but turn out to be ‘accidentally’
true in FHilb. See for example Section 7.3 later. For another example: a positive map between Frobenius
structures in FHilb, at least one of which is commutative, is automatically completely positive. The same
is not true in Rel.

Example 7.11 (The need for complete positivity). The following relation (Z,+, 0) R (Z,+, 0) is positive
but not completely positive:

R = {(n, n) | n ≥ 0} ∪ {(n,−n) | n ≥ 0} = {(|n|, n) | n ∈ Z}.

Hence complete positivity is strictly stronger than (mere) positivity.

Proof. Let I m Z be a nonzero mixed state. We may equivalently consider the subset S = {n ∈ Z | (∗, n) ∈
m} ⊆ Z satisfying 0 ∈ S and S−1 ⊆ S by Proposition 7.10. Now (∗, n) ∈ R ◦m if and only if |n| ∈ S, if and
only if −n, n ∈ S, if and only if (∗,−n) ∈ R ◦m. Trivially also (∗, 0) ∈ R ◦m. Thus R ◦m is a mixed state,
and R is a positive map.

However, R is not completely positive because it clearly does not respect inverses: (1, 1) ∈ R but not
(−1,−1) ∈ R.

7.2 Categories of completely positive maps

This section describes the main construction of the chapter: starting with a category of pure states, it
constructs the corresponding category of mixed states. We start by characterizing Definition 7.7 of completely
positive maps from an operational form into a more convenient structural form.
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The CP condition

A mixed state of a Frobenius structure (A, , ) is the special case of a completely positive map I A, as
we saw illustrated in Example 7.5. The condition characterizing when a map is completely positive that we
will end up with is a generalization of equation (7.4).

For this proof, we will need the same mild assumption as we did in the third step of Section 7.1. Namely
that if (A, , ) is a dagger Frobenius structure, B is not a zero object, and f ⊗ idB for A ⊗ B f

A ⊗ B
is a positive morphism (i.e. is of the form g† ◦ g for some g), then f itself is already positive. Let’s call a

category with this property positively monoidal. This requirement is satisfied when is an invertible scalar,

for example; it is also satisfied when A is a zero object. Intuitively, this requirement demands that the
dimension of a Frobenius structure is zero or invertible, which is the case in both of our running example
categories FHilb and Rel.

Lemma 7.12 (CP condition). Let (A, , ) and (B, , ) be dagger Frobenius structures in a braided
monoidal dagger category that is positively monoidal. If A

f
B is completely positive, then

B

A B

A

f = X

A B

A B

g

g

(7.5)

for some object X and some morphism A⊗B g
X.

Proof. Notice that A supports a dagger Frobenius structure and hence has a dagger dual object A∗ by
Theorem 5.15. Let E be the pair of pants monoid A⊗A∗, and define I m A⊗ E as:

AA A∗

(7.6)

Then m is a mixed state:

A⊗ E

A⊗ E

m
(7.6)

=

A A

A A∗

A∗

A

(3.5)

=

A A

A A∗

A∗

A

(5.1)

=

AA

AA A∗

A∗

The first equality just unfolds the definition of m and the composite Frobenius structure on A⊗E, the second
equality uses a snake equation 3.5, whereas the third equality uses the Frobenius law. Now (f ⊗ idE) ◦m is
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a mixed state:

B

A

A

A∗

A∗

B

f (7.4)

= Y

AB A∗

AB A∗

h

h

(7.7)

for some object Y and morphism h. Hence:

B

A B

A

A∗

A∗

f iso

=

B

B A∗

A∗A

A

f (7.7)

=

A∗

A∗

Y

A

A

B

B

h

h

Because the category is positively monoidal, equation (7.5) now follows.

Equation (7.5) is called the CP condition. Notice its similarity to the Frobenius identity (5.4), and also to
the oracles of Definition 6.12; the latter required the left-hand side to be unitary, whereas the CP condition
requires it to be positive. The object X is also called the ancilla system. The map g is called a Kraus
morphism, and is also written

√
f , although it is not unique. The mixed state (f ⊗ id) ◦m is also called the

Choi-matrix ; it is the transform under the Choi-Jamio lkowski isomorphism of the completely positive map.
We will shortly prove the converse of the previous lemma, but first need two preparatory lemmas showing
that the CP condition is well-behaved with respect to composition and tensor products.

Lemma 7.13 (CP maps compose). Let (A, , ), (B, , ), and (C, , ) be dagger Frobenius structures

in a monoidal dagger category. Assume d† • • d = idB for some scalar d. If A
f
B and B

g
C satisfy the

CP condition (7.5), then so does A
g◦f

C.

Proof. Say:

B

A B

A

f = X

A B

A B

√
f

√
f

C

B C

B

g = Y

B C

B C

√
g

√
g

(7.8)
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for objects X,Y and morphisms
√
f,
√
g. Then:

C

A C

A

g ◦ f (5.1)

= d† d

A

CA

C

f

g

(7.8)

=

d†

d

X Y

A

A

C

C

√
f

√
f

√
g

√
g

This uses the Frobenius law to insert a ‘handle’ d† • • d.

Lemma 7.14 (Product CP maps). If (A, , )
f

(B, , ) and (C, , )
g

(D, , ) are maps between
dagger Frobenius structures in a braided monoidal dagger category that satisfy the CP condition (7.5), then
so is (A, , )⊗ (C, , )

f⊗g
(B, , )⊗ (D, , ).

Proof. Suppose
√
f and

√
g are Kraus morphisms for f and g. Then:

A

A

B

B C D

DC

f g (7.5)

=

DA

A D

B

B C

C

√
f

√
f

√
g

√
g

This proves the lemma.

Stinespring’s theorem

We can now prove that the CP condition characterizes completely positive maps. Notice that the proof of
Lemma 7.12 did not need arbitrary ancilla systems E, and pair of pants monoids sufficed. The following
theorem will also record that.

Theorem 7.15 (Stinespring). Let (A, , ) and (B, , ) be special dagger Frobenius structures and A
f
B

a morphism in a braided monoidal dagger category that is positively monoidal. The following are equivalent:

(a) f is completely positive;

(b) f ⊗ idE is a positive map for all objects X, where E = (X∗ ⊗X, , );

(c) f satisfies the CP condition (7.5).

Proof. Clearly (a) implies (b). Lemma 7.12 shows that (b) implies (c). Finally, to show that (c) implies (a),
let I m (A, , ) ⊗ (E, , ) be a mixed state. Then m is a completely positive map and so satisfies the
CP condition. Hence, by Lemmas 7.13 and 7.14, also (f ⊗ idE) ◦m satisfies the CP condition and is thus a
mixed state.
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Example 7.16. Let’s unpack what the previous theorem says in our example categories FHilb and Rel.

� For a completely positive map A∗⊗A f
A∗⊗A in FHilb, for A = Cn, so on n-by-n matrices, the CP

condition (7.5) becomes

f =
∑
i

gi

gi

by choosing a basis |i〉 for the ancilla system and indexing the Kraus morphisms gi accordingly. Putting

a cap on the top left and a cup on the bottom right we see that this is equivalent to f(m) =
∑
i f
†
i ◦m◦fi

for matrices m. This generalizes Example 7.8, and we recognize the previous theorem as Stinespring’s
theorem, or rather, Choi’s finite-dimensional version of it.

� In Rel, a relation G R H between groupoids satisfies the CP condition when the relation

HG

HG

S =

H

G H

G

R = {
(
(g1, h1), (g2, h2)

)
| (g−12 ◦ g1)R(h2 ◦ h−11 )}

is positive. This is the case when it is symmetric and satisfies (g, h)S(g, h) when (g, h)S(g′, h′), matching
Proposition 7.10 as follows.

First, S is symmetric when (g−12 ◦ g1)R(h2 ◦ h−11 ) ⇔ (g−11 ◦ g2)R(h1 ◦ h−12 ). Taking g2 and h1 to be
identities shows that this means gRh ⇔ g−1Rh−1 for all g ∈ G and h ∈ H. Similarly, S satisfies the
other property when (g−12 ◦ g1)R(h2 ◦ h−11 ) implies iddom(g1)Riddom(h−1

1 ). But this means precisely that

gRh implies iddom gRiddomh.

For another example, we can now prove that copyable states are always completely positive maps,
generalizing Example 7.8.

Corollary 7.17. Any self-conjugate copyable state I a A of a classical structure (A, , ) in a braided
monoidal dagger category is a completely positive map.

Proof. Graphical manipulation:

a
(5.5)

=

a

(4.18)

=

a a

(5.17)

=

a

a

This used specialness, copyability, self-conjugateness and the Spider Theorem 5.22.
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The CP construction

We are now ready to define the main construction of this chapter. It takes a compact dagger category C
modeling pure states, and lifts it to a new compact dagger category CP[C] of mixed states.

Definition 7.18 (CP construction). Let C be a monoidal dagger category. Define a new category CP[C]
as follows: objects are special dagger Frobenius structures in C, and morphisms are morphisms in C that
satisfy the CP condition (7.5).

Note that CP[C] is indeed a well-defined category: identities in C satisfy the CP condition precisely because of
the Frobenius law, and Lemma 7.13 shows that composition preserves the CP condition. The CP construction
preserves much more than being a category, as we investigate next.

Proposition 7.19 (CP preserves tensors). If C is a braided monoidal dagger category, then CP[C] is a
monoidal category:

� the tensor product of objects is that of Lemma 4.8;

� the tensor product of morphisms is well-defined by Lemma 7.14;

� the tensor unit is I with multiplication I ⊗ I ρI I and unit I
idI I;

� the coherence isomorphisms α, λ, and ρ, are inherited from C.

If C is a symmetric monoidal category, then so is CP[C].

Proof. The tensor unit I is a well-defined special dagger Frobenius structure by the coherence theorem. Using
these definitions of ⊗ and I, the unitary coherence isomorphisms α, λ, and ρ, from C trivially satisfy the CP
condition. Thus CP[C] is a well-defined monoidal category. If C is additionally symmetric, the swap maps
satisfy the CP condition by the Frobenius law:

A B

B AA B

B A

(5.4)

=

A B B A

A B B A

Hence, in that case, CP[C] is symmetric monoidal.

It might look like the following lemma shows that the CP construction fabricates dual objects out of
thin air. But note that they were already present in C in the sense that Frobenius structures have duals by
Theorem 5.15.

Lemma 7.20 (CP constructs duals). Let (A, , ) be a special dagger Frobenius structure in a braided
monoidal dagger category C. Define:

A

AA

:=

A

A A

A
:=

A
(7.9)

Then (A, , ) a (A, , ) in CP[C].
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Proof. Easy graphical manipulations show that (A, , ) again satisfies associativity, unitality, the Frobenius
law, and specialness. Hence we have two well-defined objects L := (A, , ) and R = (A, , ) of CP[C].
Next, define := : I R⊗L. We show that this is a well-defined morphism in CP[C] by checking the
CP condition:

(7.9)

=
(5.1)
(4.6)
=

(5.1)

=

The first equality unfolds definitions and uses naturality of braiding, and the last two apply the Frobenius
law and unitality. Similarly, := : L⊗R I is completely positive:

(7.9)

=
(5.1)
(4.6)
=

(5.1)

=

Because composition in CP[C] is as in C, the snake equations come down precisely to the Frobenius law.
Thus and witness L a R in CP[C].

The next lemma sets up a perfect duality between the Schrödinger and Heisenberg pictures. In particular,
Example 7.8 goes through for arbitrary braided monoidal dagger categories with dagger duals: measurements
are completely positive maps from a classical structure to an arbitrary dagger Frobenius structure, and
controlled preparations go in the opposite direction.

Lemma 7.21 (CP preserves daggers). Let (A, , ) and (B, , ) be special dagger Frobenius structures
in a monoidal dagger category with dagger duals. If A

f
B satisfies the CP condition (7.5), then so does

B
f†

A.

Proof. We show that f† satisfies the CP condition.

B

AB

A

f
(5.1)
(4.6)
=

A

A

B

B

f
(5.1)
(4.6)
=

A

A

B

B

f

(3.32)

=

B

AB

A

f
(7.5)

=

B A

B A

√
f

√
f

11



The first two equations use the Frobenius law and unitality. The last equation uses the definition of transpose,
and needs X to have a dagger dual.

We can now prove the closure property stated in the introduction to this chapter: using the CP
construction, we do not need to step outside the realm of compact dagger categories. The following theorem
summarizes all the structure preserved by the CP construction.

Theorem 7.22 (CP is compact dagger). If C has the property on the left, then CP[C] has the property on
the right of the following table.

C CP[C]
monoidal dagger category category
braided monoidal dagger category monoidal category with right duals
symmetric monoidal dagger category compact category
compact dagger category compact dagger category

Proof. Combine Proposition 7.19, Lemma 7.20 and Lemma 7.21. All that is left to prove is that if C is a
compact dagger category, then the chosen dualities in CP[C] are dagger dualities. Using the notation L a R
of Lemma 7.20,

:= : L⊗R I := : R⊗ L I

satisfy the CP condition, as both are the composition of the swap map and the dagger of a map we have
already shown to satisfy the CP condition. The snake equations again come down to the Frobenius law. By
definition:

=

so in this case L and R are dagger dual objects in CP[C].

Example 7.23. As for examples:

� It follows immediately from Theorems 5.29 and 7.15 that CP[FHilb] is the category of finite-dimensional
operator algebras and completely positive maps, and that this is a compact dagger category. This is,
of course, the category we modeled the CP construction on in the first place. In fact, by Corollary 3.35
and Theorem 5.15 we can even say that CP[Hilb] is the same category of finite-dimensional operator
algebras and completely positive maps.

� Similarly, Theorem 5.37 and Proposition 7.10 say that CP[Rel] is the category of groupoids and inverse-
respecting relations, which is a compact dagger category.

7.3 Classical structures

This section considers completely positive maps to and from classical structures. We will see that the
subcategory of classical structures and completely positive maps models statistical mechanics, as expected
when taking mixed states of classical systems.

Definition 7.24 (The category CPc). Let C be a braided monoidal dagger category. The category CPc[C]
has as objects classical structures in C. Its morphisms are completely positive maps.

Again, as before, if C is compact, then so is CPc[C]. In fact, according to Lemma 7.20, any object in
CPc[C] is self-dual.

As for examples: the next subsection investigates CPc[FHilb]. In the case of Rel, completely positive
maps between classical structures have no well-known simplification. All we can say is that CPc[Rel] consists
of abelian groupoids and inverse-respecting relations.
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Stochastic matrices

If C models pure state quantum mechanics, and CP[C] mixed state quantum mechanics, then CPc[C] models
statistical mechanics.

Example 7.25. The category CPc[FHilb] is monoidally equivalent to the following: objects are natural
numbers, and morphisms m n are m-by-n matrices whose entries are nonnegative real numbers. The maps
that preserve counits correspond to those matrices whose rows sum up to one, i.e. stochastic matrices.

Proof. In FHilb, classical structures (H, , ) correspond to a choice of orthonormal basis on H by
Corollary 5.31. Hence we may identify linear maps between them with matrices. The positive elements
of the classical structure corresponding to the standard basis on Cn are by definition precisely the vectors
whose coordinates are nonnegative real numbers. By Theorem 7.15, a completely positive map Cm f Cn must
make f(|i〉) a positive element of Cn. Combining the last two facts shows that f ’s matrix has nonnegative
real entries 〈j|f |i〉.

Conversely, any special dagger Frobenius structure H in FHilb has an orthonormal basis |k〉 of positive
elements by Theorem 5.29. To verify that f ⊗ idH : Cm ⊗H Cn ⊗H is a positive morphism, it suffices to
observe that it sends |i〉 ⊗ |k〉 to the positive element f(|i〉)⊗ |k〉.

The counit of the classical structure Cn is (x1, . . . , xn) 7→ x1 + · · · + xn. So Cm f Cn preserves counits
when

∑n
i=1〈j|f |i〉 = 1.

The previous example is consistent with the morphisms between classical structures we studied in
Chapter ??. Corollary 5.34 showed that comonoid homomorphisms between classical structures correspond
to matrices where every column has a single entry one and zeroes otherwise. These are the deterministic
maps within the stochastic setting of the previous example. Lemma 5.35 showed that these are self-conjugate,
which means that their matrix entries are real numbers.

Broadcasting

We now come full circle from showing that compact dagger categories do not support uniform copying and
deleting. However, that does not yet guarantee that they model quantum mechanics. Classical mechanics
might have copying, and quantum mechanics might not, but statistical mechanics has no copying either.
What sets quantum mechanics apart is the fact that broadcasting of unknown mixed states is impossible.
Before we can get to the precise definition, we have to make sure that there exist discarding morphisms A I
in CP[C].

Lemma 7.26. Let (A, , ) be a dagger Frobenius structure in a braided monoidal dagger category C.
Then satisfies the CP condition. If additionally (A, , ) is a classical structure, then satisfies the CP
condition.

Proof. Verifying the CP condition for just comes down to unitality and the fact that the identity is
positive. If is commutative, the CP condition for can be rewritten into positive form easily using
the noncommutative spider Theorem 5.21.

Definition 7.27. let C be a braided monoidal dagger category. A broadcasting map for an object (A, , )
of CP[C] is a morphism A B A⊗A in CP[C] satisfying the following equation:

B = = B (7.10)

The object (A, , ) is called broadcastable if it allows a broadcasting map.
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Notice that the previous definition concerns just a single object, and is therefore much weaker than
Definition 4.20. Nevertheless, we can prove it holds for all classical structures.

Lemma 7.28. Let C be a braided monoidal dagger category. Classical structures are broadcastable objects
in CP[C].

Proof. Let (A, , ) be a classical structure. We will show that is a broadcasting map. It clearly
satisfies (7.10), so it suffices to show that it is a well-defined morphism in CP[C]. This follows directly from
Lemma 7.26.

In FHilb, the converse to the previous lemma holds; this is the so-called no-broadcasting theorem. So a
dagger Frobenius structure in FHilb is broadcastable if and only if it is a classical structure. However, this
is not the case in Rel. Call a category totally disconnected when its only morphisms are endomorphisms.
Totally disconnected groupoids are the extreme opposite of indiscrete ones.

Lemma 7.29. Broadcastable objects in CP[Rel] are precisely totally disconnected groupoids.

Proof. Let G be a totally disconnected groupoid, and write G for its set of morphisms. We will show that
the morphism G B G×G in Rel given by

B = {
(
g, (iddom(g), g)

)
| g ∈ G)} ∪ {

(
g, (g, iddom(g))

)
| g ∈ G}

is a broadcasting map. First of all, B respect inverses because iddom(g) = iddom(g)−1 by total disconnectedness,
so B is a well-defined morphism in CP[Rel]. When interpreted in Rel, the broadcastability equation (7.10)
reads

{(g, g) | g ∈ G} = {(g, h) | (g, (idC , h)) ∈ B for some object C} (7.11)

{(g, g) | g ∈ G} = {(g, h) | (g, (h, idC)) ∈ B for some object C}. (7.12)

These equations are satisfied by construction of B, and so B is a broadcasting map for G.
Conversely, suppose that a groupoid G is broadcastable, so that there is a morphism B in Rel respecting

inverses and satisfying (7.11) and (7.12). Let g be a morphism in G. There is an object C of G such that
(g, (idC , g)) ∈ B by (7.11). Since B respects inverses, then also (iddom(g), (idC , iddom(g))) ∈ B. But then
C = dom(g) by (7.12). On the other hand, as B respects inverses also (g−1, (idC , g

−1)) ∈ B. Again because
B respects inverses then (idcod(g), (idC , idcod(g))) ∈ B, and so C = cod(g) by (7.12). Hence dom(g) = cod(g),
and G is totally disconnected.
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