Categories and Quantum Informatics
Week 7: Complementarity

Chris Heunen

vy
3
> THE UNIVERSITY of EDINBURGH

@ informatics

1/31



Overview

v

Incompatible Frobenius structures: mutually unbiased bases

v
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Idea

» Measure qubit in basis {(§), (9)}, then in {% (%),% (1)

probability of either outcome 1/2.

» First measurement provides no information about second:
Heisenberg’s uncertainty principle.

» Orthogonal bases {a;} and {b;} are complementary/unbiased if
(ai|bj)(bjlai) = c

for some ¢ € C.



Complementarity

In braided monoidal dagger category, symmetric dagger Frobenius
structures .4, and 4, on the same object are complementary if:
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Complementarity

In braided monoidal dagger category, symmetric dagger Frobenius
structures .4, and 4, on the same object are complementary if:

Black and white not obviously interchangeable. But by symmetry:

A3

So could have added two more equalities.



Complementarity in FHilb

Commutative dagger Frobenius structures in FHilb complementary if
and only if they copy complementary bases (with ¢ = 1).



Complementarity in FHilb

Commutative dagger Frobenius structures in FHilb complementary if
and only if they copy complementary bases (with ¢ = 1).

Proof. For all a in white basis, and b in black basis:
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Twisted knickers

In compact dagger category, if A is self-dual, the following Frobenius
structure on A ® A is complementary to pair of pants:
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Twisted knickers

In compact dagger category, if A is self-dual, the following Frobenius
structure on A ® A is complementary to pair of pants:

SR, .8
o ~ T

So Frobenius structure on A gives complementary pair on A ® A.
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Pauli basis

N

Three mutually complementary bases of C*:

wos {5(1) (1)
ross {2(1) (1)
EORG
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Pauli basis

Three mutually complementary bases of C2:

woss {0 (1). ()
rows {15}
s {(0)-(9)]

» Largest family of complementary bases for C2:
no four bases all mutually unbiased.

» What is the maximum number of mutually complementary
bases in a given dimension? Only known for prime power
dimensions p".
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Characterisation

Symmetric dagger Frobenius structures in braided monoidal dagger
category complementary if and only if the following is unitary:

Proof. Compose with adjoint:

B S——— .

Conversely, if is identity, compose with white counit on top right,
black unit on bottom left, to get complementarity.



Complementarity in Rel

If G, H are nontrivial groups, these are complementary groupoids:
» objects g € G, morphisms g Mg, with (g, h’) e (g,h) = (g, hh')
> objects h € H, morphisms h ¥ b, with (g, h) o (g, h) = (gh', h)
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Complementarity in Rel

If G, H are nontrivial groups, these are complementary groupoids:
» objects g € G, morphisms gMg, with (g, h’) e (g,h) = (g, hh')
» objects h € H, morphisms h === &) h, with (g’,h) o (g,h) = (gh’, h)
Proof.

(g.hh'"1) (gg',h') [k =H']
Yk (g hk™h (g,n)

(@)

Every input related to unique output, so unitary.

Groupoid allows complementary one just when every object has
number of outgoing morphisms.
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The Deutsch-Jozsa algorithm

Solves certain problem faster than possible classically

» Typical exact quantum decision algorithm (no approximation)

» Problem artificial, but other important algorithms very similar:

» Shor’s factoring algorithm
» Grover’s search algorithm
» the hidden subgroup problem

» ‘All or nothing’ nature makes it categorical
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The Deutsch-Jozsa algorithm

Problem:
» Given 2-valued function A %+ {0, 1} on a finite set A.

» Constant if takes just a single value on every element of A.

» Balanced if takes value O on exactly half the elements of A.

» You are promised that f is either constant or balanced.
You must decide which.
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The Deutsch-Jozsa algorithm

Problem:
» Given 2-valued function A %+ {0, 1} on a finite set A.

» Constant if takes just a single value on every element of A.

» Balanced if takes value O on exactly half the elements of A.

» You are promised that f is either constant or balanced.
You must decide which.

Best classical strategy:

» Sample f on 3|A| + 1 elements of A.
If different values then balanced, otherwise constant.
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The Deutsch-Jozsa algorithm

Quantum Deutsch-Jozsa uses f only once!
How to access f? Can only apply unitary operators...

12/3



The Deutsch-Jozsa algorithm

Quantum Deutsch-Jozsa uses f only once!
How to access f? Can only apply unitary operators...
Must embed A £> {0,1} into an oracle.

Given Frobenius structures (A, 4,,4) and (B, &, ¢) in monoidal dagger
category, oracle is morphism A < B making the following unitary:
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Where to find oracles

Let (A, %), (B,4,) and (B, 4,) be symmetric dagger Frobenius.

If 4, 4, complementary, self-conjugate comonoid homomorphism
(A, 4) £ (B, &) is oracle.

Proof.




The Deutsch-Jozsa algorithm

Let ALs {0,1} be given function, and |A| = n.
Choose complementary bases © = C2, O = C[Z,)].
Let b = (), a copyable state of O.

The Deutsch—Jozsa algorithm is this morphism:

@ C? Measure the first system

Apply a unitary map

Prepare initial states
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Deutsch-Jozsa simplifies

The Deutsch-Jozsa algorithm simplifies to:

N

® L\ @

Proof. Duplicate copyable state b through white dot, and apply
noncommutative spider theorem to cluster of gray dots.



Deutsch-Jozsa correctness: constant

ifAL {0, 1} is constant, the Deutsch-Jozsa history is certain.
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Deutsch-Jozsa correctness: constant

ifAL {0, 1} is constant, the Deutsch-Jozsa history is certain.

Proof. If f(a) = x for all a € A, oracle H L c2 decomposes as:

by

16/31



Deutsch-Jozsa correctness: constant

ifAL {0, 1} is constant, the Deutsch-Jozsa history is certain.
f

Proof. If f(a) = x for all a € A, oracle H >+ C2 decomposes as:

) ?
So history is:

fo- g5t

This has norm 1, so the history is certain.
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Deutsch-Jozsa correctness:balanced

ifALs {0, 1} is balanced, the Deutsch—Jozsa history is impossible.
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Deutsch-Jozsa correctness:balanced

ifALs {0, 1} is balanced, the Deutsch—Jozsa history is impossible.

Proof. The function f is balanced just when the following holds:

Recall b = ( 1;).
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Deutsch-Jozsa correctness:balanced

ifALs {0, 1} is balanced, the Deutsch—Jozsa history is impossible.

Proof. The function f is balanced just when the following holds:

Recall b = ( ;). Hence the final history equals 0.

17/3



Bialgebras

Complementary classical structures in FHilb are mutually unbiased
bases. How to build them?
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Bialgebras

Complementary classical structures in FHilb are mutually unbiased
bases. How to build them?

One standard way: let G be finite group, and consider Hilbert space
with basis {g € G}, with
Vg gwe 9181

A g h— gh 6:1»—)Zg
geiG
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Bialgebras

Complementary classical structures in FHilb are mutually unbiased
bases. How to build them?

One standard way: let G be finite group, and consider Hilbert space
with basis {g € G}, with

ig—grg 0:g—1
A g h— gh 6:1»—)Zg
geiG

Some nice relationships emerge between ¢’ and ,é..
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Bialgebras

In a braided monoidal category, a bialgebra consists of a monoid
(A, 4, ¢) and a comonoid (A,\?,?) satisfying:

LG9 Aoy T
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Bialgebras

In a braided monoidal category, a bialgebra consists of a monoid
(A, 4, ¢) and a comonoid (A,\?’,¢) satisfying:

LG9 Aoy T

Example: monoid M is a bialgebra in Set and hence in Rel and FHilb

Vime— (mym)  o:mi—e 4 (mn)—>mn  é: e 1y
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Frobenius hates bialgebras

In a braided monoidal category, if a monoid (A, 4, é) and comonoid
(A,'9’,9) form a Frobenius structure and a bialgebra, then A ~ 1.
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Frobenius hates bialgebras

In a braided monoidal category, if a monoid (A, 4, é) and comonoid
(A,\¢’,¢) form a Frobenius structure and a bialgebra, then A ~ I.

Proof. Will show é and ¢ are inverses. The bialgebra laws already
require ¢ o é = id;. For the other composite:

l

iR Ak



Copyable states

In a braided monoidal category if 4, and ‘¢’ form bialgebra, then
copyable states for ¢’ are monoid under /..



Copyable states

In a braided monoidal category if 4, and ‘¢’ form bialgebra, then
copyable states for ¢’ are monoid under /..

Proof. Associativity is immediate. Unitality comes down to third
bialgebra law: & is copyable for \¢’. Have to prove well-definedness.
Let a and b be copyable states for \¢’.

453 da

Hence ‘¢’-copyable states are indeed closed under /..




Strong complementarity

» Consider C? in FHilb. Computational basis {(§), (9)} gives
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gives dagger Frobenius structure 4,. Complementary, but only a
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Strong complementarity

» Consider C? in FHilb. Computational basis {(§), (9)} gives

elv

dagger Frobenius structure 4.. Orthogonal basis {(‘;ﬁ ) , ( £ ) }

gives dagger Frobenius structure 4,. Complementary, but only a
bialgebra if p = 6§ = 0.

» In a braided monoidal dagger category, two dagger symmetric
Frobenius structures are strongly complementary when they are
complementary, and also form a bialgebra.



Strong complementarity in FHilb

In FHilb, strongly complementary symmetric dagger Frobenius
structures, one of which is commutative, correspond to finite groups.



Strong complementarity in FHilb

In FHilb, strongly complementary symmetric dagger Frobenius
structures, one of which is commutative, correspond to finite groups.

Proof.

» Given strongly complementary symmetric dagger Frobenius
structures, the states that are self-conjugate, copyable and
deletable for (\¢’,9) form a group under ..

» By the classification theorem for commutative dagger Frobenius
structures, there is an entire basis of such states for \¢’.



Qubit gates

In a braided monoidal dagger category, let (4, 4) and (\¢/,9) be
complementary classical structures with antipode s. Then the first
bialgebra law holds if and only if:







Qubit gates in FHilb

Fix A to be qubit C?; let (4, é) copy computational basis {|0), 1)},
and (‘¢/,9) copy the X basis. The three antipodes s become identities.

The three unitaries reduce to three CNOT gates:

CNOT =

SO O
[cNeN el
= O O O
o = O O



Qubit gates in FHilb

Fix A to be qubit C?; let (4, é) copy computational basis {|0), 1)},
and (‘¢/,9) copy the X basis. The three antipodes s become identities.

The three unitaries reduce to three CNOT gates:

1 00O
01 00O
CNOT = 0 001
0 010

These two classical structures are transported into each other by

Hadamard gate:
1 /1 1
= — —= H
H-75 )



Controlled Z
The CZ gate in FHilb can be defined as follows.

cz = {714



Controlled Z
The CZ gate in FHilb can be defined as follows.

cz = {714

Proof. Rewrite as:

@)

N

Il
S} {E]

Hence

CZ = (id ® H) o CNOT o (id ® H) =

S O O

(oNe o)

O~ OO

o O O



Controlled Z

If (A, 4, and (A,'?’) complementary classical structures in braided
monoidal dagger category, and A -2+ A satisfies H o H = id,, then CZ
makes sense and satisfies CZ o CZ = id.



Controlled Z

If (A, 4, and (A,'?’) complementary classical structures in braided
monoidal dagger category, and A -2+ A satisfies H o H = id,, then CZ
makes sense and satisfies CZ o CZ = id.

Proof.




Measurement-based computing

Single-qubit unitaries can be implemented via Euler angles: unitary
C2 4 C2 allows phases ¢, 1, § with u = Zy 0 X, o Z,,, where Zj is
rotation in Z basis over angle ¢, and X, in X basis over angle .



Measurement-based computing

Single-qubit unitaries can be implemented via Euler angles: unitary
C2 4 C2 allows phases ¢, 1, § with u = Zy 0 X, o Z,,, where Zj is
rotation in Z basis over angle ¢, and X, in X basis over angle .

If unitary C? % C? in FHilb has Euler angles ¢, v, 6, then:




Measurement-based computing

Proof. Use phased spider theorem to reduce to:

But by transport lemma, this is just:

which equals u, by definition of the Euler angles.



Summary

v

Incompatible Frobenius structures: mutually unbiased bases

v

Deutsch-Jozsa algorithm: prototypical use of complementarity

» Quantum groups: strong complementarity

v

Qubit gates: use in quantum circuits



