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Overview

I Incompatible Frobenius structures: mutually unbiased bases

I Deutsch–Jozsa algorithm: prototypical use of complementarity

I Quantum groups: strong complementarity

I Qubit gates: quantum circuits
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Idea

I Measure qubit in basis {
(

1
0

)
,
(

0
1

)
}, then in { 1√

2

(
1
1

)
, 1√

2

(
1
−1

)
}:

probability of either outcome 1/2.

I First measurement provides no information about second:
Heisenberg’s uncertainty principle.

I Orthogonal bases {ai} and {bj} are complementary/unbiased if

〈ai |bj〉〈bj |ai〉 = c

for some c ∈ C.
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Complementarity

In braided monoidal dagger category, symmetric dagger Frobenius
structures and on the same object are complementary if:

= =

Black and white not obviously interchangeable. But by symmetry:

= =

So could have added two more equalities.
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Complementarity in FHilb

Commutative dagger Frobenius structures in FHilb complementary if
and only if they copy complementary bases (with c = 1).

Proof. For all a in white basis, and b in black basis:

a

b

b

a
=

aa

bb

=

a

b

=

a

b

= 1
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Twisted knickers
In compact dagger category, if A is self-dual, the following Frobenius
structure on A⊗ A is complementary to pair of pants:

A⊗ A

A⊗ AA⊗ A

=

A

AA A

A

A

A⊗ A

=
A A

= = =

So Frobenius structure on A gives complementary pair on A⊗ A.
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Pauli basis

Three mutually complementary bases of C2:

X basis
{

1√
2

(
1
1

)
,

1√
2

(
1
−1

)}
Y basis

{
1√
2

(
1
i

)
,

1√
2

(
1
−i

)}
Z basis

{(
1
0

)
,

(
0
1

)}

I Largest family of complementary bases for C2:
no four bases all mutually unbiased.

I What is the maximum number of mutually complementary
bases in a given dimension? Only known for prime power
dimensions pn.
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Characterisation
Symmetric dagger Frobenius structures in braided monoidal dagger
category complementary if and only if the following is unitary:

Proof. Compose with adjoint:

= =

Conversely, if is identity, compose with white counit on top right,
black unit on bottom left, to get complementarity.
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Complementarity in Rel

If G,H are nontrivial groups, these are complementary groupoids:
I objects g ∈ G, morphisms g (g,h) g, with (g, h′) • (g, h) = (g, hh′)
I objects h ∈ H, morphisms h (g,h) h, with (g′, h) ◦ (g, h) = (gh′, h)

Proof.

(g, h) (g′, h′)

(g, k)
∑

k (g, hk−1) (g′, h′)

(gg′, h′) [k = h′](g, hh′−1)

Every input related to unique output, so unitary.

Groupoid allows complementary one just when every object has
number of outgoing morphisms.

9 / 31



Complementarity in Rel

If G,H are nontrivial groups, these are complementary groupoids:
I objects g ∈ G, morphisms g (g,h) g, with (g, h′) • (g, h) = (g, hh′)
I objects h ∈ H, morphisms h (g,h) h, with (g′, h) ◦ (g, h) = (gh′, h)

Proof.

(g, h) (g′, h′)

(g, k)
∑

k (g, hk−1) (g′, h′)

(gg′, h′) [k = h′](g, hh′−1)

Every input related to unique output, so unitary.

Groupoid allows complementary one just when every object has
number of outgoing morphisms.

9 / 31



The Deutsch-Jozsa algorithm

Solves certain problem faster than possible classically

I Typical exact quantum decision algorithm (no approximation)

I Problem artificial, but other important algorithms very similar:

I Shor’s factoring algorithm
I Grover’s search algorithm
I the hidden subgroup problem

I ‘All or nothing’ nature makes it categorical
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The Deutsch-Jozsa algorithm

Problem:

I Given 2-valued function A f {0,1} on a finite set A.

I Constant if takes just a single value on every element of A.

I Balanced if takes value 0 on exactly half the elements of A.

I You are promised that f is either constant or balanced.
You must decide which.

Best classical strategy:

I Sample f on 1
2 |A|+ 1 elements of A.

If different values then balanced, otherwise constant.
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The Deutsch-Jozsa algorithm

Quantum Deutsch-Jozsa uses f only once!
How to access f? Can only apply unitary operators...

Must embed A f {0,1} into an oracle.

Given Frobenius structures (A, , ) and (B, , ) in monoidal dagger
category, oracle is morphism A f B making the following unitary:

A

A

B

B

f
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Where to find oracles
Let (A, ), (B, ) and (B, ) be symmetric dagger Frobenius.
If , complementary, self-conjugate comonoid homomorphism
(A, )

f
(B, ) is oracle.

Proof.

f

f

=
f

f

=
f

f

= f f

=
f

=
f

= =
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The Deutsch-Jozsa algorithm

Let A f {0,1} be given function, and |A| = n.
Choose complementary bases = C2, = C[Z2].
Let b =

(
1
−1

)
, a copyable state of .

The Deutsch–Jozsa algorithm is this morphism:

b

C2

Prepare initial states

Apply a unitary map

Measure the first system

1/
√

21/
√

n

1/
√

n

f
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Deutsch-Jozsa simplifies

The Deutsch–Jozsa algorithm simplifies to:

b b

1/
√

21/n f

Proof. Duplicate copyable state b through white dot, and apply
noncommutative spider theorem to cluster of gray dots.
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Deutsch-Jozsa correctness: constant
If A f {0,1} is constant, the Deutsch-Jozsa history is certain.

Proof. If f(a) = x for all a ∈ A, oracle H f C2 decomposes as:

f =
x

So history is:

b b

1/
√

2

1/n

f
= x

b b

1/
√

2

1/n

=
b

1/
√

2

±1

This has norm 1, so the history is certain.
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Deutsch-Jozsa correctness:balanced

If A f {0,1} is balanced, the Deutsch–Jozsa history is impossible.

Proof. The function f is balanced just when the following holds:

b

f = 0

Recall b =
(

1
−1

)
. Hence the final history equals 0.
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Bialgebras

Complementary classical structures in FHilb are mutually unbiased
bases. How to build them?

One standard way: let G be finite group, and consider Hilbert space
with basis {g ∈ G}, with

: g 7→ g⊗ g : g 7→ 1

: g⊗ h 7→ gh : 1 7→
∑
g∈G

g

Some nice relationships emerge between and .
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Bialgebras

In a braided monoidal category, a bialgebra consists of a monoid
(A, , ) and a comonoid (A, , ) satisfying:

= = = =

Example: monoid M is a bialgebra in Set and hence in Rel and FHilb

: m 7→ (m,m) : m 7→ • : (m,n) 7→ mn : • 7→ 1M.
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Frobenius hates bialgebras

In a braided monoidal category, if a monoid (A, , ) and comonoid
(A, , ) form a Frobenius structure and a bialgebra, then A ' I.

Proof. Will show and are inverses. The bialgebra laws already
require ◦ = idI. For the other composite:

= = =
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Copyable states

In a braided monoidal category if and form bialgebra, then
copyable states for are monoid under .

Proof. Associativity is immediate. Unitality comes down to third
bialgebra law: is copyable for . Have to prove well-definedness.
Let a and b be copyable states for .

a b

=

a b

=

a b a b

Hence -copyable states are indeed closed under .
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Strong complementarity

I Consider C2 in FHilb. Computational basis {
(

1
0

)
,
(

0
1

)
} gives

dagger Frobenius structure . Orthogonal basis {
(

eiϕ

eiθ

)
,
(

eiϕ

−eiθ

)
}

gives dagger Frobenius structure . Complementary, but only a
bialgebra if ϕ = θ = 0.

I In a braided monoidal dagger category, two dagger symmetric
Frobenius structures are strongly complementary when they are
complementary, and also form a bialgebra.
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Strong complementarity in FHilb

In FHilb, strongly complementary symmetric dagger Frobenius
structures, one of which is commutative, correspond to finite groups.

Proof.
I Given strongly complementary symmetric dagger Frobenius

structures, the states that are self-conjugate, copyable and
deletable for ( , ) form a group under .

I By the classification theorem for commutative dagger Frobenius
structures, there is an entire basis of such states for .
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Qubit gates
In a braided monoidal dagger category, let ( , ) and ( , ) be
complementary classical structures with antipode s. Then the first
bialgebra law holds if and only if:

s

s

s

=
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Qubit gates
Proof.

s

s

s

=

s

=

s

iso
=

s

=

s

=

s

= = = = =
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Qubit gates in FHilb
Fix A to be qubit C2; let ( , ) copy computational basis {|0〉, |1〉},
and ( , ) copy the X basis. The three antipodes s become identities.

The three unitaries reduce to three CNOT gates:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



These two classical structures are transported into each other by
Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
= H
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Controlled Z
The CZ gate in FHilb can be defined as follows.

CZ = H

Proof. Rewrite as:

CZ =

H

H

Hence

CZ = (id ⊗ H) ◦ CNOT ◦ (id ⊗ H) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1
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Controlled Z

If (A, ) and (A, ) complementary classical structures in braided
monoidal dagger category, and A H A satisfies H ◦ H = idA, then CZ
makes sense and satisfies CZ ◦ CZ = id.

Proof.

H

H
=

H

H

=

H

H

=

H

H

=
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Measurement-based computing

Single-qubit unitaries can be implemented via Euler angles: unitary
C2 u C2 allows phases ϕ,ψ, θ with u = Zθ ◦ Xψ ◦ Zϕ, where Zθ is
rotation in Z basis over angle θ, and Xϕ in X basis over angle ϕ.

If unitary C2 u C2 in FHilb has Euler angles ϕ,ψ, θ, then:

u =

ϕ ψ θ

H H

H H
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Measurement-based computing

Proof. Use phased spider theorem to reduce to:

ϕ H ψ H θ H H

But by transport lemma, this is just:

ϕ ψ θ

which equals u, by definition of the Euler angles.
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Summary

I Incompatible Frobenius structures: mutually unbiased bases

I Deutsch-Jozsa algorithm: prototypical use of complementarity

I Quantum groups: strong complementarity

I Qubit gates: use in quantum circuits
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