Categories and Quantum Informatics Week 7: Complementarity

Chris Heunen

Overview

- Incompatible Frobenius structures: mutually unbiased bases
- Deutsch–Jozsa algorithm: prototypical use of complementarity
- Quantum groups: strong complementarity
- Qubit gates: quantum circuits

Idea

• Measure qubit in basis $\{\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}\}$, then in $\{\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\-1 \end{pmatrix}\}$: probability of either outcome 1/2.

Idea

- ► Measure qubit in basis $\{\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}\}$, then in $\{\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}\}$: probability of either outcome 1/2.
- First measurement provides no information about second: Heisenberg's *uncertainty principle*.

Idea

- ► Measure qubit in basis $\{\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}\}$, then in $\{\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}\}$: probability of either outcome 1/2.
- First measurement provides no information about second: Heisenberg's *uncertainty principle*.
- Orthogonal bases $\{a_i\}$ and $\{b_j\}$ are complementary/unbiased if

 $\langle a_i | b_j \rangle \langle b_j | a_i \rangle = c$

for some $c \in \mathbb{C}$.

Complementarity

In braided monoidal dagger category, symmetric dagger Frobenius structures \blacktriangle and \bowtie on the same object are complementary if:

Complementarity

In braided monoidal dagger category, symmetric dagger Frobenius structures 🛦 and 太 on the same object are complementary if:

Black and white not obviously interchangeable. But by symmetry:

So could have added two more equalities.

Complementarity in FHilb

Commutative dagger Frobenius structures in **FHilb** complementary if and only if they copy complementary bases (with c = 1).

Complementarity in FHilb

Commutative dagger Frobenius structures in **FHilb** complementary if and only if they copy complementary bases (with c = 1).

Proof. For all *a* in white basis, and *b* in black basis:

Twisted knickers

In compact dagger category, if *A* is self-dual, the following Frobenius structure on $A \otimes A$ is complementary to pair of pants:

Twisted knickers

In compact dagger category, if *A* is self-dual, the following Frobenius structure on $A \otimes A$ is complementary to pair of pants:

So Frobenius structure on A gives complementary pair on $A \otimes A$.

Pauli basis

Three mutually complementary bases of \mathbb{C}^2 :

$$X \text{ basis} \quad \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} \right\}$$
$$Y \text{ basis} \quad \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i \end{pmatrix} \right\}$$
$$Z \text{ basis} \quad \left\{ \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$$

Pauli basis

Three mutually complementary bases of \mathbb{C}^2 :

$$X \text{ basis} \quad \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} \right\}$$
$$Y \text{ basis} \quad \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i \end{pmatrix} \right\}$$
$$Z \text{ basis} \quad \left\{ \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$$

 Largest family of complementary bases for C²: no four bases all mutually unbiased.

Pauli basis

Three mutually complementary bases of \mathbb{C}^2 :

$$X \text{ basis} \quad \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} \right\}$$
$$Y \text{ basis} \quad \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i \end{pmatrix} \right\}$$
$$Z \text{ basis} \quad \left\{ \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$$

- ► Largest family of complementary bases for C²: no four bases all mutually unbiased.
- What is the maximum number of mutually complementary bases in a given dimension? Only known for prime power dimensions pⁿ.

Characterisation

Symmetric dagger Frobenius structures in braided monoidal dagger category complementary if and only if the following is unitary:

Characterisation

Symmetric dagger Frobenius structures in braided monoidal dagger category complementary if and only if the following is unitary:

Characterisation

Symmetric dagger Frobenius structures in braided monoidal dagger category complementary if and only if the following is unitary:

Conversely, if is identity, compose with white counit on top right, black unit on bottom left, to get complementarity.

Complementarity in Rel

If G, H are nontrivial groups, these are complementary groupoids:

- objects $g \in G$, morphisms $g \xrightarrow{(g,h)} g$, with $(g,h') \bullet (g,h) = (g,hh')$
- ▶ objects $h \in H$, morphisms $h \xrightarrow{(g,h)} h$, with $(g',h) \circ (g,h) = (gh',h)$

Complementarity in **Rel**

If *G*, *H* are nontrivial groups, these are complementary groupoids:

- objects g ∈ G, morphisms g (g,h)/(g,h) = (g,h) = (g,hh')
 objects h ∈ H, morphisms h (g,h)/(g,h) = (gh',h) = (gh',h) Proof.

Every input related to unique output, so unitary.

Groupoid allows complementary one just when every object has number of outgoing morphisms.

Solves certain problem faster than possible classically

- Typical exact quantum decision algorithm (no approximation)
- > Problem artificial, but other important algorithms very similar:
 - Shor's factoring algorithm
 - Grover's search algorithm
 - the hidden subgroup problem
- All or nothing' nature makes it categorical

Problem:

- Given 2-valued function $A \xrightarrow{f} \{0, 1\}$ on a finite set *A*.
- Constant if takes just a single value on every element of *A*.
- Balanced if takes value 0 on exactly half the elements of *A*.
- You are promised that *f* is either constant or balanced. You must decide which.

Problem:

- Given 2-valued function $A \xrightarrow{f} \{0, 1\}$ on a finite set *A*.
- Constant if takes just a single value on every element of *A*.
- Balanced if takes value 0 on exactly half the elements of *A*.
- You are promised that *f* is either constant or balanced.
 You must decide which.

Best classical strategy:

Sample *f* on ¹/₂|*A*| + 1 elements of *A*. If different values then balanced, otherwise constant.

Quantum Deutsch-Jozsa uses *f* only *once*! How to access *f*? Can only apply unitary operators...

Quantum Deutsch-Jozsa uses f only *once*! How to access f? Can only apply unitary operators... Must embed $A \xrightarrow{f} \{0, 1\}$ into an *oracle*.

Given Frobenius structures $(A, \blacktriangle, \flat)$ and (B, \bigstar, \flat) in monoidal dagger category, oracle is morphism $A \xrightarrow{f} B$ making the following unitary:

Where to find oracles

Let (A, \bigstar) , (B, \bigstar) and (B, \bigstar) be symmetric dagger Frobenius. If \bigstar, \bigstar complementary, self-conjugate comonoid homomorphism $(A, \bigstar) \xrightarrow{f} (B, \bigstar)$ is oracle.

Proof.

Let $A \xrightarrow{f} \{0, 1\}$ be given function, and |A| = n. Choose complementary bases $\mathbb{O} = \mathbb{C}^2$, $\mathbb{O} = \mathbb{C}[\mathbb{Z}_2]$. Let $b = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, a copyable state of \mathbb{O} .

The Deutsch–Jozsa algorithm is this morphism:

Deutsch-Jozsa simplifies

The Deutsch–Jozsa algorithm simplifies to:

Proof. Duplicate copyable state *b* through white dot, and apply noncommutative spider theorem to cluster of gray dots.

Deutsch-Jozsa correctness: constant

If $A \xrightarrow{f} \{0, 1\}$ is constant, the Deutsch-Jozsa history is certain.

Deutsch-Jozsa correctness: constant

If $A \xrightarrow{f} \{0, 1\}$ is constant, the Deutsch-Jozsa history is certain. **Proof.** If f(a) = x for all $a \in A$, oracle $H \xrightarrow{f} \mathbb{C}^2$ decomposes as:

Deutsch-Jozsa correctness: constant

If $A \xrightarrow{f} \{0, 1\}$ is constant, the Deutsch-Jozsa history is certain. **Proof.** If f(a) = x for all $a \in A$, oracle $H \xrightarrow{f} \mathbb{C}^2$ decomposes as:

So history is:

This has norm 1, so the history is certain.

Deutsch-Jozsa correctness:balanced

If $A \xrightarrow{f} \{0, 1\}$ is balanced, the Deutsch–Jozsa history is impossible.

Deutsch-Jozsa correctness:balanced

If $A \xrightarrow{f} \{0, 1\}$ is balanced, the Deutsch–Jozsa history is impossible. **Proof.** The function *f* is balanced just when the following holds:

$$\begin{bmatrix} f \\ f \end{bmatrix} = 0$$

Recall $b = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Deutsch-Jozsa correctness:balanced

If $A \xrightarrow{f} \{0, 1\}$ is balanced, the Deutsch–Jozsa history is impossible. **Proof.** The function *f* is balanced just when the following holds:

$$\begin{bmatrix} f \\ f \end{bmatrix} = 0$$

Recall $b = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Hence the final history equals 0.

Complementary classical structures in **FHilb** are mutually unbiased bases. How to build them?

Complementary classical structures in **FHilb** are mutually unbiased bases. How to build them?

One standard way: let *G* be finite group, and consider Hilbert space with basis $\{g \in G\}$, with

Complementary classical structures in **FHilb** are mutually unbiased bases. How to build them?

One standard way: let *G* be finite group, and consider Hilbert space with basis $\{g \in G\}$, with

Some nice relationships emerge between \forall and \blacktriangle .

In a braided monoidal category, a bialgebra consists of a monoid (A, \diamond, \bullet) and a comonoid (A, \diamond', \circ) satisfying:

In a braided monoidal category, a bialgebra consists of a monoid (A, \bigstar, \bullet) and a comonoid (A, \heartsuit, \circ) satisfying:

Example: monoid *M* is a bialgebra in Set and hence in Rel and FHilb

 $\label{eq:model} \ensuremath{\sc \psi}^{\prime} \colon m \mapsto (m,m) \qquad \ensuremath{\sc \psi} \colon m \mapsto \bullet \quad \ensuremath{\sc \phi} \colon (m,n) \mapsto mn \quad \ensuremath{\sc \phi} \colon \bullet \mapsto 1_M.$

Frobenius hates bialgebras

In a braided monoidal category, if a monoid (A, \bigstar, \bullet) and comonoid (A, \heartsuit, \circ) form a Frobenius structure and a bialgebra, then $A \simeq I$.

Frobenius hates bialgebras

In a braided monoidal category, if a monoid (A, \bigstar, \bullet) and comonoid (A, \checkmark, \circ) form a Frobenius structure and a bialgebra, then $A \simeq I$.

Proof. Will show \bullet and \circ are inverses. The bialgebra laws already require $\circ \circ \bullet = \operatorname{id}_I$. For the other composite:

Copyable states

In a braided monoidal category if \bigstar and $\forall \gamma$ form bialgebra, then copyable states for $\forall \gamma$ are monoid under \bigstar .

Copyable states

In a braided monoidal category if \bigstar and $\forall \gamma$ form bialgebra, then copyable states for $\forall \gamma$ are monoid under \bigstar .

Proof. Associativity is immediate. Unitality comes down to third bialgebra law: \blacklozenge is copyable for \heartsuit . Have to prove well-definedness. Let *a* and *b* be copyable states for \heartsuit .

Hence \forall -copyable states are indeed closed under \triangleleft .

Strong complementarity

► Consider \mathbb{C}^2 in FHilb. Computational basis $\{\begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1 \end{pmatrix}\}$ gives dagger Frobenius structure \bigstar . Orthogonal basis $\{\begin{pmatrix} e^{i\varphi}\\ e^{i\theta} \end{pmatrix}, \begin{pmatrix} e^{i\varphi}\\ -e^{i\theta} \end{pmatrix}\}$ gives dagger Frobenius structure \bigstar . Complementary, but only a bialgebra if $\varphi = \theta = 0$.

Strong complementarity

- ► Consider \mathbb{C}^2 in FHilb. Computational basis $\{\begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1 \end{pmatrix}\}$ gives dagger Frobenius structure \bigstar . Orthogonal basis $\{\begin{pmatrix} e^{i\varphi}\\ e^{i\theta} \end{pmatrix}, \begin{pmatrix} e^{i\varphi}\\ -e^{i\theta} \end{pmatrix}\}$ gives dagger Frobenius structure \bigstar . Complementary, but only a bialgebra if $\varphi = \theta = 0$.
- In a braided monoidal dagger category, two dagger symmetric Frobenius structures are strongly complementary when they are complementary, and also form a bialgebra.

Strong complementarity in FHilb

In **FHilb**, strongly complementary symmetric dagger Frobenius structures, one of which is commutative, correspond to finite groups.

Strong complementarity in FHilb

In **FHilb**, strongly complementary symmetric dagger Frobenius structures, one of which is commutative, correspond to finite groups.

Proof.

- Given strongly complementary symmetric dagger Frobenius structures, the states that are self-conjugate, copyable and deletable for (\φ', γ) form a group under ,.
- ► By the classification theorem for commutative dagger Frobenius structures, there is an entire basis of such states for \\.

Qubit gates

In a braided monoidal dagger category, let $(, \bullet, \bullet)$ and $(, \circ, \circ)$ be complementary classical structures with antipode *s*. Then the first bialgebra law holds if and only if:

Qubit gates

Proof.

Qubit gates in FHilb

Fix *A* to be qubit \mathbb{C}^2 ; let (\bigstar, \bullet) copy computational basis $\{|0\rangle, |1\rangle\}$, and (\forall, \diamond) copy the *X* basis. The three antipodes *s* become identities. The three unitaries reduce to three CNOT gates:

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Qubit gates in FHilb

Fix *A* to be qubit \mathbb{C}^2 ; let (\bigstar, \bullet) copy computational basis $\{|0\rangle, |1\rangle\}$, and (\forall, \diamond) copy the *X* basis. The three antipodes *s* become identities. The three unitaries reduce to three CNOT gates:

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

These two classical structures are transported into each other by Hadamard gate:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} = \begin{bmatrix} H\\ H \end{bmatrix}$$

The CZ gate in **FHilb** can be defined as follows.

$$CZ = \Phi H \Phi$$

The CZ gate in FHilb can be defined as follows.

$$CZ = H$$

Proof. Rewrite as:

Hence

$$CZ = (id \otimes H) \circ CNOT \circ (id \otimes H) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

If (A, \bigstar) and (A, \heartsuit) complementary classical structures in braided monoidal dagger category, and $A \xrightarrow{H} A$ satisfies $H \circ H = id_A$, then CZ makes sense and satisfies $CZ \circ CZ = id$.

If (A, \bigstar) and (A, \heartsuit) complementary classical structures in braided monoidal dagger category, and $A \xrightarrow{H} A$ satisfies $H \circ H = id_A$, then CZ makes sense and satisfies $CZ \circ CZ = id$.

Proof.

Measurement-based computing

Single-qubit unitaries can be implemented via Euler angles: unitary $\mathbb{C}^2 \xrightarrow{u} \mathbb{C}^2$ allows phases φ, ψ, θ with $u = Z_\theta \circ X_\psi \circ Z_\varphi$, where Z_θ is rotation in *Z* basis over angle θ , and X_φ in *X* basis over angle φ .

Measurement-based computing

Single-qubit unitaries can be implemented via Euler angles: unitary $\mathbb{C}^2 \xrightarrow{u} \mathbb{C}^2$ allows phases φ, ψ, θ with $u = Z_\theta \circ X_\psi \circ Z_\varphi$, where Z_θ is rotation in *Z* basis over angle θ , and X_φ in *X* basis over angle φ .

If unitary $\mathbb{C}^2 \xrightarrow{u} \mathbb{C}^2$ in **FHilb** has Euler angles φ, ψ, θ , then:

Measurement-based computing

Proof. Use phased spider theorem to reduce to:

But by transport lemma, this is just:

which equals *u*, by definition of the Euler angles.

- Incompatible Frobenius structures: mutually unbiased bases
- ► Deutsch-Jozsa algorithm: prototypical use of complementarity
- Quantum groups: strong complementarity
- Qubit gates: use in quantum circuits