Overview

- Incompatible Frobenius structures: mutually unbiased bases
- Deutsch–Jozsa algorithm: prototypical use of complementarity
- Quantum groups: strong complementarity
- Qubit gates: quantum circuits
Idea

- Measure qubit in basis \{ (1, 0), (0, 1) \}, then in \{ \frac{1}{\sqrt{2}} (1, 1), \frac{1}{\sqrt{2}} (1, -1) \}: probability of either outcome 1/2.
Idea

- Measure qubit in basis \{ \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \}, \text{ then in } \{ \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ 1 \end{array} \right), \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ -1 \end{array} \right) \}: \text{ probability of either outcome } 1/2.

- First measurement provides no information about second: Heisenberg’s *uncertainty principle*.
Idea

- Measure qubit in basis \{ (\frac{1}{0}) , (0\frac{1}{1}) \}, then in \{ \frac{1}{\sqrt{2}} (\frac{1}{1}) , \frac{1}{\sqrt{2}} (\frac{1}{-1}) \}: probability of either outcome 1/2.

- First measurement provides no information about second: Heisenberg’s *uncertainty principle*.

- Orthogonal bases \{a_i\} and \{b_j\} are *complementary/unbiased* if

 \[
 \langle a_i | b_j \rangle \langle b_j | a_i \rangle = c
 \]

 for some \(c \in \mathbb{C} \).
Complementarity

In braided monoidal dagger category, symmetric dagger Frobenius structures \triangleright and \triangleleft on the same object are complementary if:
Complementarity

In braided monoidal dagger category, symmetric dagger Frobenius structures \triangleright and \triangleleft on the same object are **complementary** if:

\[
\begin{align*}
\begin{array}{c}
\text{Diagram 1} \quad = \quad \text{Diagram 2} \quad = \\
\text{Diagram 3}
\end{array}
\end{align*}
\]

Black and white not obviously interchangeable. But by symmetry:

\[
\begin{align*}
\begin{array}{c}
\text{Diagram 4} \quad = \quad \text{Diagram 5} \quad = \\
\text{Diagram 6}
\end{array}
\end{align*}
\]

So could have added two more equalities.
Complementarity in FHilb

Commutative dagger Frobenius structures in FHilb complementary if and only if they copy complementary bases (with $c = 1$).
Complementarity in FHilb

Commutative dagger Frobenius structures in FHilb complementary if and only if they copy complementary bases (with $c = 1$).

Proof. For all a in white basis, and b in black basis:

\[
\begin{align*}
\begin{array}{ccc}
\begin{array}{ccc}
a & b & b \\
\downarrow & & \downarrow \\
b & & a
\end{array}
& = &
\begin{array}{ccc}
b & a \\
\downarrow & & \downarrow \\
a & & a
\end{array}
& = &
\begin{array}{ccc}
b & \\
\downarrow & & \downarrow \\
a & & a
\end{array}
& = &
\begin{array}{ccc}
b \\
\downarrow & & \downarrow \\
a
\end{array}
= 1
\end{array}
\end{align*}
\]
Twisted knickers

In compact dagger category, if A is self-dual, the following Frobenius structure on $A \otimes A$ is complementary to pair of pants:
Twisted knickers

In compact dagger category, if A is self-dual, the following Frobenius structure on $A \otimes A$ is complementary to pair of pants:

So Frobenius structure on A gives complementary pair on $A \otimes A$.
Pauli basis

Three mutually complementary bases of \mathbb{C}^2:

- **X basis**:
 \[
 \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}
 \]

- **Y basis**:
 \[
 \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} \right\}
 \]

- **Z basis**:
 \[
 \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}
 \]
Pauli basis

Three mutually complementary bases of \mathbb{C}^2:

- **X basis** $\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$

- **Y basis** $\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} \right\}$

- **Z basis** $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$

- Largest family of complementary bases for \mathbb{C}^2: no four bases all mutually unbiased.
Pauli basis

Three mutually complementary bases of \mathbb{C}^2:

- **X basis**
 $$\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$$

- **Y basis**
 $$\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} \right\}$$

- **Z basis**
 $$\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

- Largest family of complementary bases for \mathbb{C}^2: no four bases all mutually unbiased.

- What is the maximum number of mutually complementary bases in a given dimension? Only known for prime power dimensions p^n.

Characterisation

Symmetric dagger Frobenius structures in braided monoidal dagger category complementary if and only if the following is unitary:

\[\text{Diagram with two circles connected by a line} \]
Characterisation

Symmetric dagger Frobenius structures in braided monoidal dagger category complementary if and only if the following is unitary:

Proof. Compose with adjoint:
Characterisation

Symmetric dagger Frobenius structures in braided monoidal dagger category complementary if and only if the following is unitary:

\[
\text{Proof. Compose with adjoint:}
\]

Conversely, if is identity, compose with white counit on top right, black unit on bottom left, to get complementarity.
Complementarity in \textbf{Rel}

If G, H are nontrivial groups, these are complementary groupoids:

- objects $g \in G$, morphisms $g \xrightarrow{(g,h)} g$, with $(g, h') \circ (g, h) = (g, hh')$
- objects $h \in H$, morphisms $h \xrightarrow{(g,h)} h$, with $(g', h) \circ (g, h) = (gh', h)$
Complementarity in **Rel**

If G, H are nontrivial groups, these are complementary groupoids:

- objects $g \in G$, morphisms $g \xrightarrow{(g,h)} g$, with $(g, h') \bullet (g, h) = (g, hh')$
- objects $h \in H$, morphisms $h \xrightarrow{(g,h)} h$, with $(g', h) \circ (g, h) = (gh', h)$

Proof.

Every input related to unique output, so unitary.

Groupoid allows complementary one just when every object has number of outgoing morphisms.
The Deutsch-Jozsa algorithm

Solves certain problem faster than possible classically

- Typical exact quantum decision algorithm (no approximation)
- Problem artificial, but other important algorithms very similar:
 - Shor’s factoring algorithm
 - Grover’s search algorithm
 - the hidden subgroup problem
- ‘All or nothing’ nature makes it categorical
The Deutsch-Jozsa algorithm

Problem:

- Given 2-valued function $A \xrightarrow{f} \{0, 1\}$ on a finite set A.
- **Constant** if takes just a single value on every element of A.
- **Balanced** if takes value 0 on exactly half the elements of A.
- You are promised that f is either constant or balanced. You must decide which.
The Deutsch-Jozsa algorithm

Problem:

- Given 2-valued function $f : A \rightarrow \{0, 1\}$ on a finite set A.
- **Constant** if takes just a single value on every element of A.
- **Balanced** if takes value 0 on exactly half the elements of A.
- You are promised that f is either constant or balanced. You must decide which.

Best classical strategy:

- Sample f on $\frac{1}{2}|A| + 1$ elements of A. If different values then balanced, otherwise constant.
The Deutsch-Jozsa algorithm

Quantum Deutsch-Jozsa uses f only once!
How to access f? Can only apply unitary operators...
The Deutsch-Jozsa algorithm

Quantum Deutsch-Jozsa uses \(f \) only *once*!

How to access \(f \)? Can only apply unitary operators...

Must embed \(A \xrightarrow{f} \{0, 1\} \) into an *oracle*.

Given Frobenius structures \((A, \&_A, *$_A*)\) and \((B, \&_B, *$_B*)\) in monoidal dagger category, *oracle* is morphism \(A \xrightarrow{f} B \) making the following unitary:
Where to find oracles

Let \((A, \otimes), (B, \otimes)\) and \((B, \otimes)\) be symmetric dagger Frobenius. If \(\otimes\) complementary, self-conjugate comonoid homomorphism \((A, \otimes) \overset{f}{\rightarrow} (B, \otimes)\) is oracle.

Proof.
The Deutsch-Jozsa algorithm

Let $A \xrightarrow{f} \{0, 1\}$ be given function, and $|A| = n$. Choose complementary bases $\bigcirc = \mathbb{C}^2$, $\bigcirc = \mathbb{C}[\mathbb{Z}_2]$. Let $b = \left(\begin{array}{c} 1 \\ -1 \end{array} \right)$, a copyable state of \bigcirc.

The **Deutsch–Jozsa algorithm** is this morphism:

1. Prepare initial states
2. Apply a unitary map
3. Measure the first system
4. Prepare initial states
Deutsch-Jozsa simplifies

The Deutsch–Jozsa algorithm simplifies to:

\[
\frac{1}{\sqrt{2}} \frac{1}{n} f b
\]

Proof. Duplicate copyable state \(b \) through white dot, and apply noncommutative spider theorem to cluster of gray dots.
Deutsch-Jozsa correctness: constant

If $A \xrightarrow{f} \{0, 1\}$ is constant, the Deutsch-Jozsa history is certain.
Deutsch-Jozsa correctness: constant

If $A \xrightarrow{f} \{0, 1\}$ is constant, the Deutsch-Jozsa history is certain.

Proof. If $f(a) = x$ for all $a \in A$, oracle $H \xrightarrow{f} \mathbb{C}^2$ decomposes as:

\[
\begin{align*}
\begin{array}{c}
f \\
\end{array} &= \\
\begin{array}{c}
x \\
\end{array}
\end{align*}
\]
Deutsch-Jozsa correctness: constant

If $A \xrightarrow{f} \{0, 1\}$ is constant, the Deutsch-Jozsa history is certain.

Proof. If $f(a) = x$ for all $a \in A$, oracle $H \xrightarrow{f} \mathbb{C}^2$ decomposes as:

\[
\begin{align*}
 f &= x \\
 b &= 1/\sqrt{2} \\
 1/n &=
\end{align*}
\]

So history is:

\[
\begin{align*}
 b &= b \\
 1/\sqrt{2} &= 1/\sqrt{2} \\
 1/n &= 1/n \\
 \pm 1 &= \pm 1 \\
 1/\sqrt{2} &= 1/\sqrt{2}
\end{align*}
\]

This has norm 1, so the history is certain.
Deutsch-Jozsa correctness: balanced

If $A \xrightarrow{f} \{0, 1\}$ is balanced, the Deutsch–Jozsa history is impossible.
Deutsch-Jozsa correctness: balanced

If $A^f \rightarrow \{0, 1\}$ is balanced, the Deutsch-Jozsa history is impossible.

Proof. The function f is balanced just when the following holds:

\[
\begin{array}{c}
\text{b} \\
\downarrow \\
\text{f} \\
\text{= 0}
\end{array}
\]

Recall $b = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
Deutsch-Jozsa correctness: balanced

If \(A \xrightarrow{f} \{0, 1\} \) is balanced, the Deutsch–Jozsa history is impossible.

Proof. The function \(f \) is balanced just when the following holds:

\[
\begin{array}{c}
\bigtriangleup \\
\downarrow \\
\bigtriangledown \\
0
\end{array}
\]

Recall \(b = \left(\begin{array}{c} 1 \\ -1 \end{array} \right) \). Hence the final history equals 0.
Bialgebras

Complementary classical structures in FHilb are mutually unbiased bases. How to build them?
Bialgebras

Complementary classical structures in FHilb are mutually unbiased bases. How to build them?

One standard way: let G be finite group, and consider Hilbert space with basis $\{g \in G\}$, with

$\Upsilon: g \mapsto g \otimes g$

$\triangleleft: g \otimes h \mapsto gh$

$\Phi: g \mapsto 1$

$\bullet: 1 \mapsto \sum_{g \in G} g$
Bialgebras

Complementary classical structures in \textbf{FHilb} are mutually unbiased bases. How to build them?

One standard way: let G be finite group, and consider Hilbert space with basis \{\(g \in G\)}, with

\[
\begin{align*}
\mathcal{Y}: g & \mapsto g \otimes g \\
\mathcal{A}: g \otimes h & \mapsto gh
\end{align*}
\]

\[
\begin{align*}
\mathcal{O}: g & \mapsto 1 \\
\mathcal{O}: 1 & \mapsto \sum_{g \in G} g
\end{align*}
\]

Some nice relationships emerge between \mathcal{Y} and \mathcal{A}.
Bialgebras

In a braided monoidal category, a bialgebra consists of a monoid \((A, \cdot, \varepsilon)\) and a comonoid \((A, \triangledown, \varphi)\) satisfying:

\[
\begin{align*}
\triangledown & \Rightarrow \varepsilon, \\
\varphi & \Rightarrow \varepsilon,
\end{align*}
\]

Example: monoid \(M\) is a bialgebra in \(\text{Set}\) and hence in \(\text{Rel}\) and \(\text{FHilb}\):

\[
\begin{align*}
\varepsilon &: \ x \mapsto (x, x), \\
\varphi &: \ (x, y) \mapsto xy, \\
\varepsilon &: \ 1 \mapsto 1_M.
\end{align*}
\]
In a braided monoidal category, a bialgebra consists of a monoid $(A, \cdot, \mathbb{1})$ and a comonoid $(A, \varepsilon, \epsilon)$ satisfying:

Example: monoid M is a bialgebra in \textbf{Set} and hence in \textbf{Rel} and \textbf{FHilb}

$$\varepsilon^\prime: m \mapsto (m, m) \quad \varepsilon: m \mapsto \bullet \quad \cdot: (m, n) \mapsto mn \quad \mathbb{1}: \bullet \mapsto \mathbb{1}_M.$$
Frobenius hates bialgebras

In a braided monoidal category, if a monoid \((A, \hat{\cdot}, \hat{\bullet})\) and comonoid \((A, \hat{\cdot}', \hat{\bullet}')\) form a Frobenius structure and a bialgebra, then \(A \cong I\).
Frobenius hates bialgebras

In a braided monoidal category, if a monoid \((A, \cdot, \varepsilon)\) and comonoid \((A, \delta, \epsilon)\) form a Frobenius structure and a bialgebra, then \(A \cong I\).

Proof. Will show \(\varepsilon\) and \(\delta\) are inverses. The bialgebra laws already require \(\delta \circ \varepsilon = \text{id}_I\). For the other composite:
Copyable states

In a braided monoidal category if \(\triangleright \) and \(\triangleright \rhd \) form bialgebra, then copyable states for \(\triangleright \) are monoid under \(\triangleright \).
Copyable states

In a braided monoidal category if \otimes and \triangleright form bialgebra, then copyable states for \triangleright are monoid under \otimes.

Proof. Associativity is immediate. Unitality comes down to third bialgebra law: \bullet is copyable for \triangleright. Have to prove well-definedness. Let a and b be copyable states for \triangleright.

\[
\begin{align*}
\begin{array}{c}
\begin{tikzpicture}
\draw (-0.5,0) -- (-0.5,1);
\draw (0.5,0) -- (0.5,1);
\draw (0,1) -- (0,2);
\draw (-0.5,1) -- (0,1);
\draw (0.5,1) -- (0,1);
\draw (0,2) -- (0,3);
\filldraw[fill=black] (-0.5,0) circle (0.1);
\filldraw[fill=black] (0.5,0) circle (0.1);
\filldraw[fill=white] (0,1) circle (0.1);
\filldraw[fill=black] (0,2) circle (0.1);
\end{tikzpicture}
\end{array}
\end{align*}
\]

Hence \triangleright-copyable states are indeed closed under \otimes.
Strong complementarity

Consider \mathbb{C}^2 in FHilb. Computational basis $\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \}$ gives dagger Frobenius structure \triangleright. Orthogonal basis $\{ \begin{pmatrix} e^{i\phi} \\ e^{i\theta} \end{pmatrix}, \begin{pmatrix} e^{i\phi} \\ -e^{i\theta} \end{pmatrix} \}$ gives dagger Frobenius structure \triangleright. Complementary, but only a bialgebra if $\phi = \theta = 0$.
Strong complementarity

- Consider \mathbb{C}^2 in FHilb. Computational basis $\{(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$ gives dagger Frobenius structure \triangleleft. Orthogonal basis $\{\begin{pmatrix} e^{i\varphi} \\ e^{i\theta} \end{pmatrix}, \begin{pmatrix} e^{i\varphi} \\ -e^{i\theta} \end{pmatrix}\}$ gives dagger Frobenius structure \triangle. Complementary, but only a bialgebra if $\varphi = \theta = 0$.

- In a braided monoidal dagger category, two dagger symmetric Frobenius structures are strongly complementary when they are complementary, and also form a bialgebra.
Strong complementarity in \mathbf{FHilb}

In \mathbf{FHilb}, strongly complementary symmetric dagger Frobenius structures, one of which is commutative, correspond to finite groups.
In **FHilb**, strongly complementary symmetric dagger Frobenius structures, one of which is commutative, correspond to finite groups.

Proof.

- Given strongly complementary symmetric dagger Frobenius structures, the states that are self-conjugate, copyable and deletable for \((\mathcal{Y}, \mathcal{F})\) form a group under \(\otimes\).
- By the classification theorem for commutative dagger Frobenius structures, there is an entire basis of such states for \(\mathcal{Y}\).
Qubit gates

In a braided monoidal dagger category, let (\otimes, \oplus) and (\Uparrow, \circledast) be complementary classical structures with antipode s. Then the first bialgebra law holds if and only if:

\[s^2 = \frac{24}{31} \]
Qubit gates

Proof.
Qubit gates in FHilb

Fix A to be qubit \mathbb{C}^2; let (\otimes, \bullet) copy computational basis $\{|0\rangle, |1\rangle\}$, and (\bigvee, \bigvee) copy the X basis. The three antipodes s become identities. The three unitaries reduce to three CNOT gates:

$$CNOT = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{pmatrix}$$
Qubit gates in FHilb

Fix A to be qubit \mathbb{C}^2; let (\otimes, \oplus) copy computational basis $\{|0\rangle, |1\rangle\}$, and (\bigwedge, \bigvee) copy the X basis. The three antipodes s become identities.

The three unitaries reduce to three CNOT gates:

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

These two classical structures are transported into each other by Hadamard gate:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
Controlled Z

The CZ gate in \textbf{FHilb} can be defined as follows.

\[\text{CZ} = \begin{array}{c}
\text{H}
\end{array} \]
Controlled Z

The CZ gate in FHilb can be defined as follows.

\[CZ = \begin{array}{c}
\end{array} \]

Proof. Rewrite as:

\[CZ = \begin{array}{c}
\end{array} \]

Hence

\[CZ = (\text{id} \otimes H) \circ \text{CNOT} \circ (\text{id} \otimes H) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix} \]
Controlled Z

If \((A, \&_A)\) and \((A, \&')\) complementary classical structures in braided monoidal dagger category, and \(A \xrightarrow{H} A\) satisfies \(H \circ H = \text{id}_A\), then CZ makes sense and satisfies \(\text{CZ} \circ \text{CZ} = \text{id}\).
Controlled Z

If \((A, \cdot)\) and \((A, \triangledown)\) complementary classical structures in braided monoidal dagger category, and \(A \xrightarrow{H} A\) satisfies \(H \circ H = \text{id}_{A}\), then CZ makes sense and satisfies \(\text{CZ} \circ \text{CZ} = \text{id}\).

Proof.
Measurement-based computing

Single-qubit unitaries can be implemented via **Euler angles**: unitary $\mathbb{C}^2 \rightarrow \mathbb{C}^2$ allows phases φ, ψ, θ with $u = Z_\theta \circ X_\psi \circ Z_\varphi$, where Z_θ is rotation in Z basis over angle θ, and X_φ in X basis over angle φ.
Measurement-based computing

Single-qubit unitaries can be implemented via Euler angles: unitary $C^2 \xrightarrow{u} C^2$ allows phases φ, ψ, θ with $u = Z_\theta \circ X_\psi \circ Z_\varphi$, where Z_θ is rotation in Z basis over angle θ, and X_φ in X basis over angle φ.

If unitary $C^2 \xrightarrow{u} C^2$ in FHilb has Euler angles φ, ψ, θ, then:
Proof. Use phased spider theorem to reduce to:

\[\varphi H \psi H \theta H \]

But by transport lemma, this is just:

\[\varphi \psi \theta \]

which equals \(u \), by definition of the Euler angles.
Summary

- Incompatible Frobenius structures: mutually unbiased bases
- Deutsch-Jozsa algorithm: prototypical use of complementarity
- Quantum groups: strong complementarity
- Qubit gates: use in quantum circuits