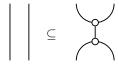
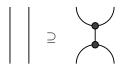
Categories and Quantum Informatics exercise sheet 7: Complementarity

Exercise 5.1. Let (G, \circ) and (G, \bullet) be two complementary groupoids (see Proposition 6.9).

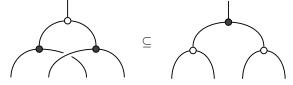
(a) Assume that (G, \circ) is a group. Show that:



(b) Assume that (G, \circ) is a group. Show that:



(c) Assume that (G, \circ) is a group and that the corresponding Frobenius structures in **Rel** form a bialgebra. Show that:



Exercise 5.2. Let A be a set with a prime number of elements. Show that pairs of complementary Frobenius structures on A in **Rel** correspond to groups whose underlying set is A.

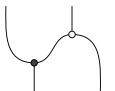
Exercise 5.3. Consider a special dagger Frobenius structure in Rel corresponding to a groupoid G.

- (a) Show that nonzero copyable states correspond to endohomsets $\mathbf{G}(A, A)$ of \mathbf{G} that are isolated in the sense that $\mathbf{G}(A, B) = \emptyset$ for each object B in \mathbf{G} different from A.
- (b) Show that unbiased states of \mathbf{G} correspond to sets containing exactly one morphism into each object of \mathbf{G} and exactly one morphism out of each object of \mathbf{G} .
- (c) Consider the following two groupoids on the morphism set $\{a, b, c, d\}$.

$$\stackrel{a}{\stackrel{\circ}{\longrightarrow}} \stackrel{c}{\underbrace{c}} \stackrel{b}{\stackrel{\circ}{\longleftarrow}} \stackrel{c}{\underbrace{c}} \stackrel{a}{\underbrace{a}} \stackrel{c}{\stackrel{\circ}{\longleftarrow}} \stackrel{c}{\underbrace{a}} \stackrel{c} \underbrace{a} \stackrel{c} \underbrace{a} \stackrel{c} \underbrace{a} \stackrel{c} \underbrace{a} \stackrel{c} \underbrace{a} \stackrel{c}$$

Show that copyable states for one are unbiased for the other, but that they are not complementary. Conclude that the converse of Proposition 6.11 is false.

Exercise 5.4. A Latin square is an n-by-n matrix L with entries from $\{1, \ldots, n\}$, with each $i = 1, \ldots, n$ appearing exactly once in each row and each column. Choose an orthonormal basis $\{e_1, \ldots, e_n\}$ for \mathbb{C}^n . Define $\Psi: \mathbb{C}^n \to \mathbb{C}^n \otimes \mathbb{C}^n$ by $e_i \mapsto e_i \otimes e_i$, and $A: \mathbb{C}^n \to \mathbb{C}^n \otimes \mathbb{C}^n \to \mathbb{C}^n$ by $e_i \otimes e_j \mapsto e_{L_{ij}}$. Show that the composite



is unitary. Note that \bigwedge need not be associative or unital.

Exercise 5.5. This exercise is about *property* versus *structure*. Suppose that a category \mathbf{C} has products. Show that any monoid in \mathbf{C} has a unique bialgebra structure.