Categories and Quantum Informatics

Week 6: Frobenius structures

Chris Heunen

Overview

- ▶ Frobenius structure: interacting co/monoid, self-duality
- ▶ Normal forms: coherence theorem
- Frobenius law: coherence between dagger and closure
- ▶ Classification: in FHilb and Rel
- Phases: unitary operators

Idea

Orthonormal basis $\{e_i\}$ for H in **FHilb** gives comonoid $\forall : e_i \mapsto e_i \otimes e_i$. Its adjoint \land is comparison: $e_i \otimes e_i \mapsto e_i$ and $e_i \otimes e_j \mapsto 0$ if $i \neq j$.

Idea

Orthonormal basis $\{e_i\}$ for H in **FHilb** gives comonoid $\forall : e_i \mapsto e_i \otimes e_i$. Its adjoint \land is comparison: $e_i \otimes e_i \mapsto e_i$ and $e_i \otimes e_j \mapsto 0$ if $i \neq j$.

These cooperate:

$$= \begin{bmatrix} \frac{1}{e_i} & \text{if } i = j \\ 0 & \text{if } i \neq j \end{bmatrix} = \begin{bmatrix} \frac{1}{e_i} & \frac{1}{e_i} & \frac{1}{e_i} \\ \frac{1}{e_i} & \frac{1}{e_i} & \frac{1}{e_i} \end{bmatrix}$$

Idea

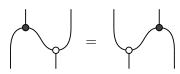
Orthonormal basis $\{e_i\}$ for H in **FHilb** gives comonoid $\forall : e_i \mapsto e_i \otimes e_i$. Its adjoint \land is comparison: $e_i \otimes e_i \mapsto e_i$ and $e_i \otimes e_j \mapsto 0$ if $i \neq j$.

These cooperate:

$$= \begin{bmatrix} \frac{1}{e_i} & \text{if } i = j \\ 0 & \text{if } i \neq j \end{bmatrix} = \begin{bmatrix} \frac{1}{e_i} & \frac{1}{e_i} & \frac{1}{e_i} \\ \frac{1}{e_i} & \frac{1}{e_i} & \frac{1}{e_i} \end{bmatrix}$$

This monoid/comonoid interaction is called the Frobenius law.

In a monoidal category, a Frobenius structure is a comonoid (A, \lor, \diamond) and monoid $(A, , \downarrow, \diamond)$ satisfying the Frobenius law:



In a monoidal category, a Frobenius structure is a comonoid $(A, \heartsuit, 9)$ and monoid $(A, , \downarrow, \downarrow)$ satisfying the Frobenius law:

In a monoidal category, a Frobenius structure is a comonoid $(A, \heartsuit, 9)$ and monoid $(A, , \downarrow, \downarrow)$ satisfying the Frobenius law:

Examples of dagger Frobenius structures:

▶ In FHilb: a Hilbert space equipped with an orthogonal basis

In a monoidal category, a Frobenius structure is a comonoid (A, \lor, \diamond) and monoid $(A, , \downarrow, \diamond)$ satisfying the Frobenius law:

- ▶ In **FHilb**: a Hilbert space equipped with an orthogonal basis
- ▶ In **FHilb**: let *G* be finite group, spanning Hilbert space *A*. Define group algebra \spadesuit : $g \otimes h \mapsto gh$, and \bullet : $z \mapsto z \cdot 1_G$.

In a monoidal category, a Frobenius structure is a comonoid (A, \lor, \lor) and monoid $(A, , \downarrow, \downarrow)$ satisfying the Frobenius law:

- ▶ In FHilb: a Hilbert space equipped with an orthogonal basis
- ▶ In **FHilb**: let *G* be finite group, spanning Hilbert space *A*. Define group algebra ♠: $g \otimes h \mapsto gh$, and •: $z \mapsto z \cdot 1_G$. Adjoint: \forall : $\sum_{h \in G} gh^{-1} \otimes h$, and •: $1_G \mapsto g$ and $1_G \neq g \mapsto 0$.

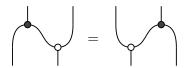
In a monoidal category, a Frobenius structure is a comonoid (A, \lor, \diamond) and monoid $(A, , \downarrow, \diamond)$ satisfying the Frobenius law:

- ▶ In FHilb: a Hilbert space equipped with an orthogonal basis
- ▶ In **FHilb**: let *G* be finite group, spanning Hilbert space *A*. Define group algebra \spadesuit : $g \otimes h \mapsto gh$, and \bullet : $z \mapsto z \cdot 1_G$. Adjoint: Ψ : $\sum_{h \in G} gh^{-1} \otimes h$, and Φ : $1_G \mapsto g$ and $1_G \neq g \mapsto 0$. Frobenius law: LHS $(g \otimes h) = \sum_{k \in G} gk^{-1} \otimes kh = \text{RHS}(g \otimes h)$.

In a monoidal category, a Frobenius structure is a comonoid $(A, \checkmark, ?)$ and monoid $(A, \checkmark, $)$ satisfying the Frobenius law:

- ▶ In FHilb: a Hilbert space equipped with an orthogonal basis
- ▶ In **FHilb**: let *G* be finite group, spanning Hilbert space *A*. Define group algebra ♠: $g \otimes h \mapsto gh$, and •: $z \mapsto z \cdot 1_G$. Adjoint: ♥: $\sum_{h \in G} gh^{-1} \otimes h$, and •: $1_G \mapsto g$ and $1_G \neq g \mapsto 0$. Frobenius law: LHS $(g \otimes h) = \sum_{k \in G} gk^{-1} \otimes kh = RHS(g \otimes h)$.
- ▶ In **Rel**: let **G** be groupoid. Monoid in **Rel**: \spadesuit : $(g,h) \sim g \circ h$, and \bullet : $\bullet \sim \mathrm{id}_X$.

In a monoidal category, a Frobenius structure is a comonoid $(A, \checkmark, ?)$ and monoid $(A, \checkmark, $)$ satisfying the Frobenius law:



If A = A, called dagger Frobenius structure.

- ▶ In FHilb: a Hilbert space equipped with an orthogonal basis
- ▶ In **FHilb**: let *G* be finite group, spanning Hilbert space *A*. Define group algebra ♠: $g \otimes h \mapsto gh$, and •: $z \mapsto z \cdot 1_G$. Adjoint: ∀: $\sum_{h \in G} gh^{-1} \otimes h$, and •: $1_G \mapsto g$ and $1_G \neq g \mapsto 0$. Frobenius law: LHS $(g \otimes h) = \sum_{k \in G} gk^{-1} \otimes kh = \text{RHS}(g \otimes h)$.
- ▶ In **Rel**: let **G** be groupoid. Monoid in **Rel**: ♠: $(g,h) \sim g \circ h$, and •: • $\sim \operatorname{id}_X$. Frobenius law: $(g,h) \sim (a,b \circ h)$ for $g=a \circ b$, $\operatorname{t}(h)=\operatorname{s}(b)$.

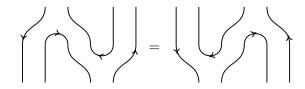
Pair of pants

In a dagger monoidal category, if $A \dashv A^*$, the pair of pants monoid $A^* \otimes A$ carries a dagger Frobenius structure.

Pair of pants

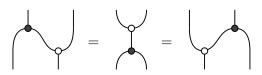
In a dagger monoidal category, if $A \dashv A^*$, the pair of pants monoid $A^* \otimes A$ carries a dagger Frobenius structure.

Proof.



Extended Frobenius law

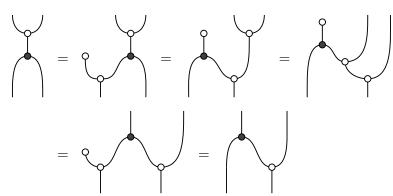
Any Frobenius structure satisfies:



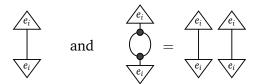
Extended Frobenius law

Any Frobenius structure satisfies:

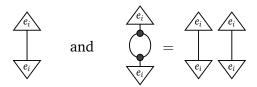
Proof.



If \forall copies orthogonal basis $\{e_i\}$, can find (squared) norm of e_i :

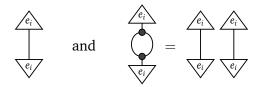


If \forall copies orthogonal basis $\{e_i\}$, can find (squared) norm of e_i :



So can characterize orthonormality via Frobenius structure.

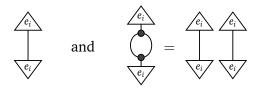
If \forall copies orthogonal basis $\{e_i\}$, can find (squared) norm of e_i :



So can characterize orthonormality via Frobenius structure.

A Frobenius structure is special if:

If \forall copies orthogonal basis $\{e_i\}$, can find (squared) norm of e_i :

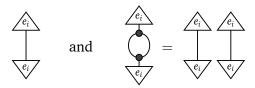


So can characterize orthonormality via Frobenius structure.

A Frobenius structure is special if:

Examples:

If \forall copies orthogonal basis $\{e_i\}$, can find (squared) norm of e_i :



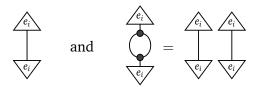
So can characterize orthonormality via Frobenius structure.

A Frobenius structure is special if:

Examples:

Group algebra in FHilb is only special for trivial group

If \forall copies orthogonal basis $\{e_i\}$, can find (squared) norm of e_i :



So can characterize orthonormality via Frobenius structure.

A Frobenius structure is special if:

Examples:

- ▶ Group algebra in **FHilb** is only special for trivial group
- ▶ Orthogonal basis in **FHilb** is special just when basis is orthonormal

If \forall copies orthogonal basis $\{e_i\}$, can find (squared) norm of e_i :

So can characterize orthonormality via Frobenius structure.

A Frobenius structure is special if:

Examples:

- ▶ Group algebra in **FHilb** is only special for trivial group
- ▶ Orthogonal basis in **FHilb** is special just when basis is orthonormal
- ▶ Groupoid Frobenius structure in **Rel** is always special

In a braided monoidal dagger category, a classical structure is a special commutative dagger Frobenius structure.

In a braided monoidal dagger category, a classical structure is a special commutative dagger Frobenius structure.

Examples:

▶ In **FHilb**: an orthonormal basis

► In **Rel**: abelian group

In a braided monoidal dagger category, a classical structure is a special commutative dagger Frobenius structure.

Examples:

- ▶ In **FHilb**: an orthonormal basis
- ▶ In **Rel**: abelian group

Definition of classical structure redundant:

- ▶ (Co)commutativity implies half of (co)unitality
- Speciality and Frobenius law imply (co)associativity
- ▶ Dual object and Frobenius law imply (co)unitality

In a braided monoidal dagger category, a classical structure is a special commutative dagger Frobenius structure.

Examples:

- ▶ In **FHilb**: an orthonormal basis
- ▶ In **Rel**: abelian group

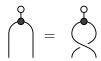
Definition of classical structure redundant:

- ▶ (Co)commutativity implies half of (co)unitality
- Speciality and Frobenius law imply (co)associativity
- ▶ Dual object and Frobenius law imply (co)unitality

To check that $(A, \diamondsuit, \delta)$ is classical structure, only need:

Symmetry

Pair of pants hardly ever commutative. However: A Frobenius structure is symmetric when:



Symmetry

Pair of pants hardly ever commutative. However:

A Frobenius structure is symmetric when:

In a compact category, this is equivalent to the following:

Symmetry

Pair of pants hardly ever commutative. However:

A Frobenius structure is symmetric when:

In a compact category, this is equivalent to the following:

Examples:

- ▶ Pair of pants: in **FHilb** this says Tr(ab) = Tr(ba)
- Group algebras: inverses in groups are two-sided inverses
- Groupoid Frobenius structure: inverses are two-sided

Self-duality

If $(A, \forall \gamma, \rho, \blacktriangle, \clubsuit)$ Frobenius structure in monoidal category, then $A \dashv A$ is self-dual with:

Self-duality

If $(A, \forall \gamma, \rho, \blacktriangle, \clubsuit)$ Frobenius structure in monoidal category, then $A \dashv A$ is self-dual with:

Proof.

Nondegenerate forms

Monoid $(A, \blacktriangle, \bullet)$ forms Frobenius structure with comonoid (A, \forall, \circ) iff allows nondegenerate form: map $\circ: A \to I$ with

part of self-duality $A \dashv A$.

Nondegenerate forms

Monoid $(A, \blacktriangle, \bullet)$ forms Frobenius structure with comonoid (A, \forall, \circ) iff allows nondegenerate form: map $\circ: A \to I$ with

part of self-duality $A \dashv A$.

Proof. One direction is the previous theorem.

Nondegenerate forms

Monoid (A, , ,) forms Frobenius structure with comonoid (A, \forall, \circ) iff allows nondegenerate form: map $\circ: A \to I$ with

part of self-duality $A \dashv A$.

Proof. One direction is the previous theorem.

Conversely, suppose $I \stackrel{\eta}{\rightarrow} A \otimes A$ satisfies:

Monoid (A, , ,) forms Frobenius structure with comonoid (A, \forall, \circ) iff allows nondegenerate form: map $\circ: A \to I$ with

part of self-duality $A \dashv A$.

Proof. One direction is the previous theorem.

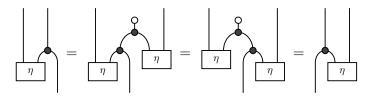
Conversely, suppose $I \stackrel{\eta}{\rightarrow} A \otimes A$ satisfies:

Define comultiplication as:

$$=$$
 $\frac{1}{\eta}$

Proof (continued.)

Could have defined the comultiplication with η left or right:



Proof (continued.)

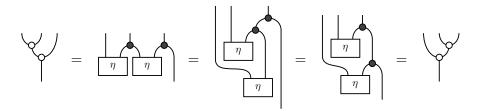
Could have defined the comultiplication with η left or right:

Counitality:

$$= \frac{1}{\eta} = \frac{1}{\eta} = \frac{1}{\eta}$$

Proof (continued.)

Coassociativity:



Proof (continued.)

Coassociativity:

Frobenius law:

$$= \frac{1}{\eta} = \frac{\eta}{\eta}$$

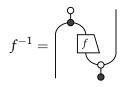
Homomorphisms

A homomorphism of Frobenius structures is morphism which is both monoid and comonoid homomorphism.

Homomorphisms

A homomorphism of Frobenius structures is morphism which is both monoid and comonoid homomorphism. They are isomorphisms.

Proof. Given homomorphism $A \xrightarrow{f} B$, construct inverse as:



Homomorphisms

A homomorphism of Frobenius structures is morphism which is both monoid and comonoid homomorphism. They are isomorphisms.

Proof. Given homomorphism $A \xrightarrow{f} B$, construct inverse as:

$$f^{-1} = \bigcap_{f}$$

Indeed:

Two ways to think about graphical calculus:

- diagram represents morphism: merely shorthand to write down e.g. linear map;
- diagram is entity in its own right:can be manipulated by replacing equal parts.

Two ways to think about graphical calculus:

- diagram represents morphism: merely shorthand to write down e.g. linear map;
- diagram is entity in its own right: can be manipulated by replacing equal parts.

First viewpoint: ok if different diagrams represent same morphism. Second viewpoint: combinatorial/graph theoretic flavour.

Two ways to think about graphical calculus:

- diagram represents morphism:
 merely shorthand to write down e.g. linear map;
- diagram is entity in its own right: can be manipulated by replacing equal parts.

First viewpoint: ok if different diagrams represent same morphism. Second viewpoint: combinatorial/graph theoretic flavour.

A normal form theorem connects the two: proving that all diagrams representing fixed morphism can be rewritten into canonical diagram (like coherence theorem)

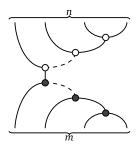
Two ways to think about graphical calculus:

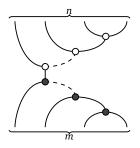
- diagram represents morphism: merely shorthand to write down e.g. linear map;
- diagram is entity in its own right: can be manipulated by replacing equal parts.

First viewpoint: ok if different diagrams represent same morphism. Second viewpoint: combinatorial/graph theoretic flavour.

A normal form theorem connects the two: proving that all diagrams representing fixed morphism can be rewritten into canonical diagram (like coherence theorem)
Unique way to copy (\gamma), discard (\gamma), fuse (\lambda), create (\delta) data!

15/41





Proof. Induction on the number of dots.

Proof. (continued.)

Base case. Trivial, as the diagram must be one of , , , , , , ,

Proof. (continued.)

Base case. Trivial, as the diagram must be one of , , , , , , , , , , , , *Induction step.* Assume all diagrams with at most n dots can be brought in normal form, and consider a diagram with n+1 dots.

Proof. (continued.)

Base case. Trivial, as the diagram must be one of , , , , , , , , , , , , , , , , *Induction step.* Assume all diagrams with at most n dots can be brought in normal form, and consider a diagram with n+1 dots. Use naturality to write diagram in form with topmost dot.

Proof. (continued.)

► Topmost dot is γ: use counitality to eliminate it.

Proof. (continued.)

- ► Topmost dot is γ: use counitality to eliminate it.
- ▶ Topmost dot is ∀: use coassociativity to reach normal form.

Proof. (continued.)

- ► Topmost dot is γ: use counitality to eliminate it.
- ▶ Topmost dot is ∀: use coassociativity to reach normal form.
- ► Topmost dot is **\(\epsilon**: impossible by connectedness.

Proof. (continued.)

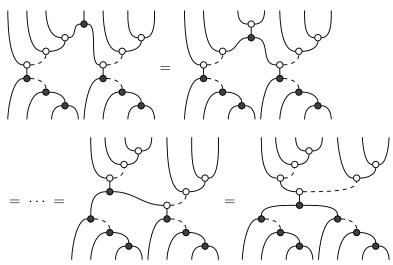
- ► Topmost dot is γ: use counitality to eliminate it.
- ▶ Topmost dot is ∀: use coassociativity to reach normal form.
- ► Topmost dot is **\| \\ :** impossible by connectedness.
- ► Topmost dot is **△**: the most interesting case.

Proof. (continued.)

- ► Topmost dot is γ: use counitality to eliminate it.
- ▶ Topmost dot is ∀: use coassociativity to reach normal form.
- ► Topmost dot is •: impossible by connectedness.
- ► Topmost dot is ▲: the most interesting case. Is the diagram underneath the ▲ connected? If so, use coassociativity and speciality.

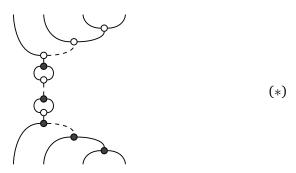
Proof. (continued.)

Suppose instead the rest of the diagram is disconnected:



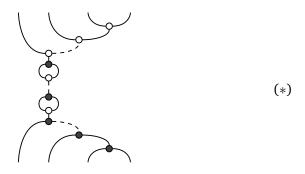
More spider theorems

In a monoidal category, let (A, , , , , , , , , , ,) be a Frobenius structure. Any connected morphism $A^{\otimes m} \to A^{\otimes n}$ built out of finitely many pieces , , , , , , , , , , and id, using \circ and \otimes , equals (*).



More spider theorems

In a monoidal category, let (A, , , , , , , , , , ,) be a Frobenius structure. Any connected morphism $A^{\otimes m} \to A^{\otimes n}$ built out of finitely many pieces , , , , , , , , ,, and id, using \circ and \otimes , equals (*).



No braided spider theorem

In a braided non-symmetric monoidal category, there is no normal form for commutative Frobenius algebras.

No braided spider theorem

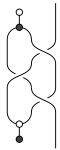
In a braided non-symmetric monoidal category, there is no normal form for commutative Frobenius algebras.

Proof. Regard the following diagram as a piece of string on which an overhand knot is tied:

No braided spider theorem

In a braided non-symmetric monoidal category, there is no normal form for commutative Frobenius algebras.

Proof. Regard the following diagram as a piece of string on which an overhand knot is tied:



The Frobenius algebra axioms induce homotopy equivalences ('deformations') of the corresponding graph. Such moves cannot untie the knot.

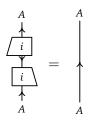
Involutive monoids

If (A, m, u) is monoid, so is (A^*, m_*, u_*) .

Involutive monoids

If (A, m, u) is monoid, so is (A^*, m_*, u_*) .

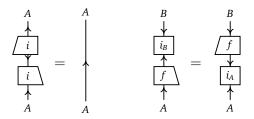
An involution for a monoid (A, \curlywedge, δ) is a monoid homomorphism $A \xrightarrow{i} A^*$ satisfying $i_* \circ i = \mathrm{id}_A$.



Involutive monoids

If (A, m, u) is monoid, so is (A^*, m_*, u_*) .

An involution for a monoid (A, \curlywedge, δ) is a monoid homomorphism $A \xrightarrow{i} A^*$ satisfying $i_* \circ i = \mathrm{id}_A$.



A morphism of involutive monoids is monoid homomorphism $A \xrightarrow{f} B$ satisfying $i_B \circ f = f_* \circ i_A$.

Example involutive monoids

▶ Matrix algebra. \mathbb{M}_n is an involutive monoid in **FHilb**. Opposite monoid \mathbb{M}_n^* : multiplication ab in \mathbb{M}_n^* is ba in \mathbb{M}_n . Canonical involution $\mathbb{M}_n \to \mathbb{M}_n^*$ given by $f \mapsto f^{\dagger}$.

Example involutive monoids

- ▶ Matrix algebra. \mathbb{M}_n is an involutive monoid in **FHilb**. Opposite monoid \mathbb{M}_n^* : multiplication ab in \mathbb{M}_n^* is ba in \mathbb{M}_n . Canonical involution $\mathbb{M}_n \to \mathbb{M}_n^*$ given by $f \mapsto f^{\dagger}$.
- ▶ Pair of pants. $A^* \otimes A$ involutive in a dagger pivotal category. Identity map as involution, because of conventions:

Example involutive monoids

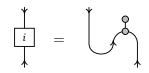
- ▶ Matrix algebra. \mathbb{M}_n is an involutive monoid in **FHilb**. Opposite monoid \mathbb{M}_n^* : multiplication ab in \mathbb{M}_n^* is ba in \mathbb{M}_n . Canonical involution $\mathbb{M}_n \to \mathbb{M}_n^*$ given by $f \mapsto f^{\dagger}$.
- ▶ Pair of pants. $A^* \otimes A$ involutive in a dagger pivotal category. Identity map as involution, because of conventions:

► Groupoids. **G** in **Rel** is involutive. Opposite monoid: induced by opposite groupoid **G**^{op}

Canonical involution $G \rightarrow G^*$ given by $g \sim g^{-1}$.

Frobenius law from way of the dagger

Monoid (A, \land, b) is dagger Frobenius if and only if i is involution:



Frobenius law from way of the dagger

Monoid (A, \diamond, \diamond) is dagger Frobenius if and only if i is involution:

Proof. Assume dagger Frobenius.

Monoid (A, \diamondsuit, b) is dagger Frobenius if and only if i is involution:

Proof. Assume dagger Frobenius.

▶ *i* preserves multiplication:

Monoid (A, \diamondsuit, b) is dagger Frobenius if and only if i is involution:

Proof. Assume dagger Frobenius.

▶ *i* preserves multiplication:

▶ *i* preserves units: easy.

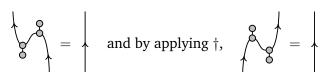
Monoid (A, \diamondsuit, b) is dagger Frobenius if and only if i is involution:

Proof. Assume dagger Frobenius.

▶ *i* preserves multiplication:

- ▶ *i* preserves units: easy.
- ▶ *i* is involution:

Proof. (continued.) Conversely, suppose $i_* \circ i = id$. Then:



Proof. (continued.) Conversely, suppose $i_* \circ i = id$. Then:

So we have a Frobenius structure, defined by a nondegenerate form. Is it a dagger Frobenius structure?

Proof. (continued.) Conversely, suppose $i_* \circ i = id$. Then:

So we have a Frobenius structure, defined by a nondegenerate form.

Is it a dagger Frobenius structure?

The condition that *i* preserves multiplication gives:

So the form definition gives rise to the correct comultiplication.

Classification in **FHilb**

Theorem: special dagger Frobenius structures in **FHilb** are of the form $\mathbb{M}_{n_1} \oplus \cdots \mathbb{M}_{n_k}$.

Classification in **FHilb**

Theorem: special dagger Frobenius structures in **FHilb** are of the form $\mathbb{M}_{n_1} \oplus \cdots \mathbb{M}_{n_k}$.

Proof:

- ► Cayley: dagger Frobenius structure on H embeds into $H^* \otimes H$
- ▶ $H^* \otimes H$ isomorphic to $\mathbb{M}_{\dim(H)}$
- ▶ so *H* involutive subalgebra of $\mathbb{M}_{\dim(H)}$: C*-algebra
- ▶ Artin-Wedderburn: must be of form $\mathbb{M}_{n_1} \oplus \cdots \mathbb{M}_{n_k}$

Classification in FHilb

Theorem: special dagger Frobenius structures in **FHilb** are of the form $\mathbb{M}_{n_1} \oplus \cdots \mathbb{M}_{n_k}$.

Proof:

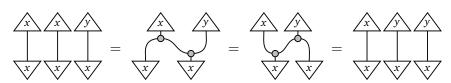
- ► Cayley: dagger Frobenius structure on H embeds into $H^* \otimes H$
- ▶ $H^* \otimes H$ isomorphic to $\mathbb{M}_{\dim(H)}$
- ▶ so *H* involutive subalgebra of $\mathbb{M}_{\dim(H)}$: C*-algebra
- ▶ Artin-Wedderburn: must be of form $\mathbb{M}_{n_1} \oplus \cdots \mathbb{M}_{n_k}$

Corollary: classical structure in **FHilb** copy orthonormal bases **Proof:** must be of form $\mathbb{C} \oplus \cdots \oplus \mathbb{C}$.

Frobenius structure that copies basis is dagger Frobenius if and only if basis is orthogonal.

Frobenius structure that copies basis is dagger Frobenius if and only if basis is orthogonal.

Proof. For nonzero copyable states:



Frobenius structure that copies basis is dagger Frobenius if and only if basis is orthogonal.

Proof. For nonzero copyable states:

If $\langle x|y\rangle = 0$, then this is satisfied.

Frobenius structure that copies basis is dagger Frobenius if and only if basis is orthogonal.

Proof. For nonzero copyable states:

If $\langle x|y\rangle = 0$, then this is satisfied.

If $\langle x|y\rangle \neq 0$, this implies $\langle x|x\rangle = \langle x|y\rangle$. Similarly $\langle y|x\rangle = \langle y|y\rangle$.

Frobenius structure that copies basis is dagger Frobenius if and only if basis is orthogonal.

Proof. For nonzero copyable states:

If $\langle x|y\rangle = 0$, then this is satisfied.

If $\langle x|y\rangle \neq 0$, this implies $\langle x|x\rangle = \langle x|y\rangle$. Similarly $\langle y|x\rangle = \langle y|y\rangle$.

Hence $\langle x - y | x - y \rangle = \langle x | x \rangle - \langle x | y \rangle - \langle y | x \rangle + \langle y | y \rangle = 0$, so x = y.

Orthogonal bases and morphisms

In **FHilb**, morphism between two commutative dagger Frobenius structures acts as function on copyable states if and only if it is comonoid homomorphism.

Orthogonal bases and morphisms

In **FHilb**, morphism between two commutative dagger Frobenius structures acts as function on copyable states if and only if it is comonoid homomorphism.

Proof. Suffices to see about basis of copyable states $\{e_i\}$.

Hence $f(e_i)$ copyable.

Theorem: Special dagger Frobenius structures in **Rel** correspond exactly to groupoids.

Theorem: Special dagger Frobenius structures in **Rel** correspond exactly to groupoids.

Proof. Write $A \times A \xrightarrow{M} A$ for multiplication, $U \subseteq A$ for unit.

Theorem: Special dagger Frobenius structures in **Rel** correspond exactly to groupoids.

Proof. Write $A \times A \xrightarrow{M} A$ for multiplication, $U \subseteq A$ for unit.

M is single-valued: by speciality $a(M \circ M^{\dagger})b$ iff a = b:

$$c \bigoplus_{a}^{b} d =$$
 $d =$
 $d =$

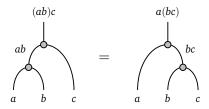
So: if (c,d)Ma and (c,d)Mb, must have a = b.

May simply write ab for unique c with (a, b)Mc.

Remember: *ab* not always defined!

Proof. (continued)

Associativity:



So ab and (ab)c defined exactly when bc and a(bc) are defined, and then (ab)c = a(bc).

Proof. (continued)

Unitality: for units $x, y \in U$

So: a, b allow $x \in U$ with xa = b iff a = b.

And: a, b allow $y \in U$ with ay = b iff a = b.

If $z \in U$ then xz = x for some $x \in U$. But then x = z!

Units idempotent; multiplication of different ones undefined.

If xa = a = x'a, then a = xa = x(x'a) = (xx')a, so x = x'.

So every element has unique left/right identity.

Proof. (continued)

Category: U set of objects, *A* set of morphisms.

If fg defined and gh defined, want (fg)h = f(gh) defined too:

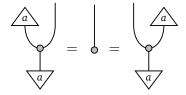
If fg and gh defined then LHS defined, so RHS defined too.

Proof. (continued)

Inverses: for $f \in A$ with left unit x and right unit y:

Phases

Let (A, \curlywedge, b) be Frobenius structure in a monoidal dagger category. State $I \xrightarrow{a} A$ is called phase when:



Phases

Let (A, \curlywedge, b) be Frobenius structure in a monoidal dagger category. State $I \xrightarrow{a} A$ is called phase when:

Its (right) phase shift is the following morphism $A \rightarrow A$:

▶ For classical structure in **FHilb** copying basis $\{e_i\}$, vector $a = a_1e_1 + \cdots + a_ne_n$ is phase iff each a_i on unit circle: $|a_i|^2 = 1$.

- ▶ For classical structure in **FHilb** copying basis $\{e_i\}$, vector $a = a_1e_1 + \cdots + a_ne_n$ is phase iff each a_i on unit circle: $|a_i|^2 = 1$.
- ▶ The unit 6 of a Frobenius structure is always a phase.

- ▶ For classical structure in **FHilb** copying basis $\{e_i\}$, vector $a = a_1e_1 + \cdots + a_ne_n$ is phase iff each a_i on unit circle: $|a_i|^2 = 1$.
- ▶ The unit 6 of a Frobenius structure is always a phase.
- ▶ In a compact dagger category, phases for pair of pants $(A^* \otimes A, \land \searrow, \smile)$ correspond to unitary morphisms. **Proof.**

- ▶ For classical structure in **FHilb** copying basis $\{e_i\}$, vector $a = a_1e_1 + \cdots + a_ne_n$ is phase iff each a_i on unit circle: $|a_i|^2 = 1$.
- ▶ The unit 6 of a Frobenius structure is always a phase.
- ▶ In a compact dagger category, phases for pair of pants $(A^* \otimes A, / \searrow, \smile)$ correspond to unitary morphisms. **Proof.** The name of an morphism $A \xrightarrow{f} A$ is a phase when:

But this means $f \circ f^{\dagger} = \mathrm{id}_A$; similarly $f^{\dagger} \circ f = \mathrm{id}_A$.

▶ Phases of Frobenius structure \mathbb{M}_n in **FHilb** form set U(n) of n-by-n unitary matrices. Hence phases of $\mathbb{M}_{k_1} \oplus \cdots \oplus \mathbb{M}_{k_n}$ range over $U(k_1) \times \cdots \times U(k_n)$.

- ▶ Phases of Frobenius structure \mathbb{M}_n in **FHilb** form set U(n) of n-by-n unitary matrices. Hence phases of $\mathbb{M}_{k_1} \oplus \cdots \oplus \mathbb{M}_{k_n}$ range over $U(k_1) \times \cdots \times U(k_n)$.
- ▶ Classical structure \mathbb{C}^n copying basis $\{e_1, \ldots, e_n\}$. Phases are elements of $U(1) \times \cdots \times U(1)$; phase shift $\mathbb{C}^n \to \mathbb{C}^n$ is accompanying unitary matrix.

- ▶ Phases of Frobenius structure \mathbb{M}_n in **FHilb** form set U(n) of n-by-n unitary matrices. Hence phases of $\mathbb{M}_{k_1} \oplus \cdots \oplus \mathbb{M}_{k_n}$ range over $U(k_1) \times \cdots \times U(k_n)$.
- ▶ Classical structure \mathbb{C}^n copying basis $\{e_1, \dots, e_n\}$. Phases are elements of $U(1) \times \dots \times U(1)$; phase shift $\mathbb{C}^n \to \mathbb{C}^n$ is accompanying unitary matrix.
- ► The phases of a Frobenius structure in **Rel** induced by a group *G* are elements of that group *G* itself.

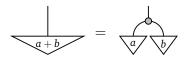
- ▶ Phases of Frobenius structure \mathbb{M}_n in **FHilb** form set U(n) of n-by-n unitary matrices. Hence phases of $\mathbb{M}_{k_1} \oplus \cdots \oplus \mathbb{M}_{k_n}$ range over $U(k_1) \times \cdots \times U(k_n)$.
- ▶ Classical structure \mathbb{C}^n copying basis $\{e_1, \dots, e_n\}$. Phases are elements of $U(1) \times \dots \times U(1)$; phase shift $\mathbb{C}^n \to \mathbb{C}^n$ is accompanying unitary matrix.
- ► The phases of a Frobenius structure in **Rel** induced by a group *G* are elements of that group *G* itself.

Proof. For a subset $a \subseteq G$, equation defining phases reads

$${g^{-1}h \mid g, h \in a} = {1_G} = {hg^{-1} \mid g, h \in a}.$$

So if $g \in G$, then $a = \{g\}$ is a phase. But if a contains distinct elements $g \neq h$ of G, cannot be phase. Similarly, $a = \emptyset$ not phase. Hence a phase precisely when singleton $\{g\}$.

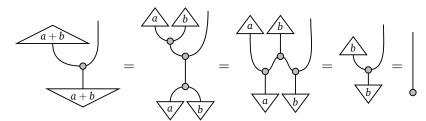
In a monoidal dagger category, the phases for a dagger Frobenius structure form a group, with unit & and:



In a monoidal dagger category, the phases for a dagger Frobenius structure form a group, with unit & and:

$$a+b$$
 = a

Proof. This is again a well-defined phase:

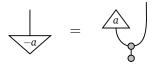


The flipped equation follows similarly.

Associativity is clear, hence phases form a monoid.

Proof. (continued)

Left-inverse of phase *a* is:



Proof. (continued)

Left-inverse of phase *a* is:

$$-a$$
 = a

Left-inverse of a is -a:

Proof. (continued)

Left-inverse of phase *a* is:

$$-a$$
 = a

Left-inverse of a is -a:

$$= \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} = \begin{array}{c} \end{array}$$

Similarly there is right-inverse. But in monoids, left and right inverses are equal: l = l(xr) = (lx)r = r.

Example phase groups

► In **FHilb**, the phase group for the pair of pants Frobenius structure is the unitary group.

Example phase groups

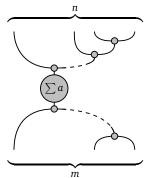
- ▶ In **FHilb**, the phase group for the pair of pants Frobenius structure is the unitary group.
- Phase addition in the Frobenius structure $\mathbb{M}_{k_1} \oplus \cdots \oplus \mathbb{M}_{k_n}$ in **FHilb** is entrywise multiplication in $U(k_1) \times \cdots \times U(k_n)$. In particular, phase addition in a classical structure in **FHilb** is multiplication of diagonal matrices.

Example phase groups

- ▶ In **FHilb**, the phase group for the pair of pants Frobenius structure is the unitary group.
- ▶ Phase addition in the Frobenius structure $\mathbb{M}_{k_1} \oplus \cdots \oplus \mathbb{M}_{k_n}$ in **FHilb** is entrywise multiplication in $U(k_1) \times \cdots \times U(k_n)$. In particular, phase addition in a classical structure in **FHilb** is multiplication of diagonal matrices.
- ▶ In **Rel**, the phase group induced by a group *G* is the group itself.

Phased spider theorem

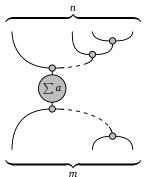
Let $(A, \not h, b)$ be classical structure in braided monoidal dagger category. Any connected morphism $A^{\otimes m} \to A^{\otimes n}$ built of finitely many $\not h, b, \operatorname{id}, \sigma$ and phases using o, \otimes , and \dagger , equals



where a ranges over all the phases used in the diagram.

Phased spider theorem

Let $(A, \not h, b)$ be classical structure in braided monoidal dagger category. Any connected morphism $A^{\otimes m} \to A^{\otimes n}$ built of finitely many $\not h, b, \operatorname{id}, \sigma$ and phases using o, \otimes , and \dagger , equals



where a ranges over all the phases used in the diagram.

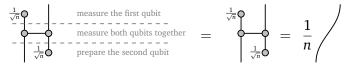
Proof. Use braidings to have all phases dangle at the bottom. Apply Spider Theorem. Use phase addition to reduce to single phase $\sum a$ on bottom right. Apply Spider Theorem again.

State transfer

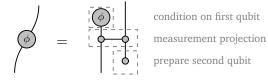
State transfer protocol: transfer state of Hilbert space H from one system to another, with success probability $1/\dim(H)^2$.

May be lax in drawing, e.g. projection $H \otimes H \rightarrow H \otimes H$:

The procedure looks like this:



Extra challenge: apply phase gate while transferring state



Summary

- ► Frobenius structures: interacting co/monoid, self-duality
- ▶ Normal forms: spider theorems
- Frobenius law: justified by coherence
- ► Classification: matrix algebras, bases, groupoids
- ▶ Phases: unitary operators, state transfer

Next week: interaction between two Frobenius structures