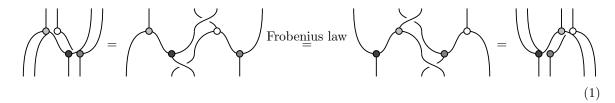
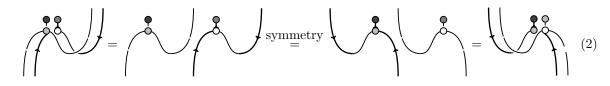
Categories and Quantum Informatics exercise sheet 6: Frobenius structures

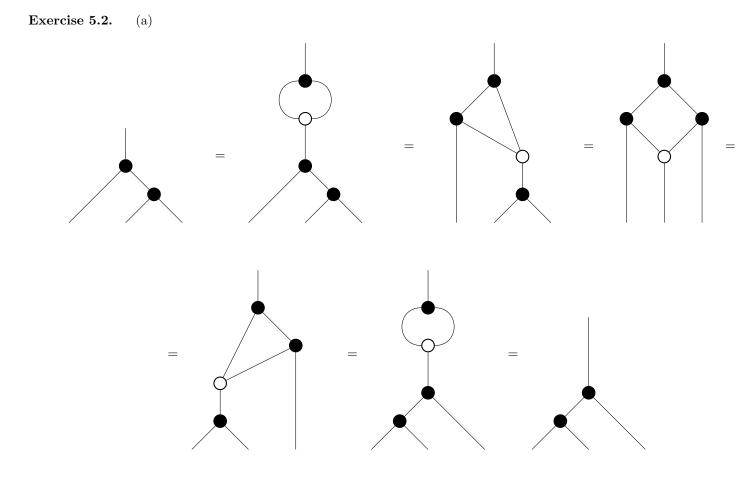
Exercise 5.1. (a) We have seen before that the tensor product of a monoid is again a monoid. The same holds for comonoids. It is left to verify the Frobenius law:



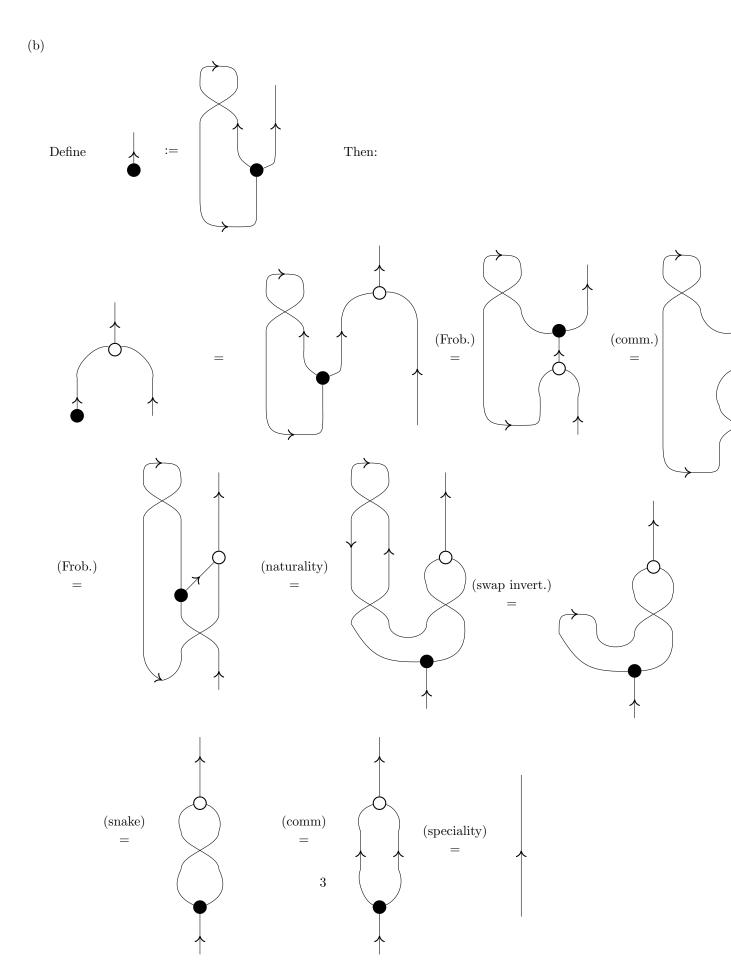
(b) We will use the fact that the tensor product $A \otimes B$ of two spaces A, B that have duals A^*, B^* , is dual to the tensor product $A^* \otimes B^*$. We use the alternative definition of symmetric Frobenius algebras in symmetric monoidal categories; however, it can also be shown directly.



(c) The tensor product of commutative frobenius structures is again a commutative frobenius structure by (a) and an argument similar to (b). It is left to show that the tensor product of special dagger Frobenius algebras is special.



 $\mathbf{2}$



Exercise 5.3. Suppose $\{x_0, \ldots, x_n\}$ is a minimal nonempty linearly dependent set of nonzero copyable states. Then $x_0 = \sum_{i=1}^n z_i x_i$ for suitable coefficients $z_i \in \mathbb{C}$. So

$$\sum_{i=1}^{n} z_i(x_i \otimes x_i) = \sum_{i=1}^{n} z_i d(x_i)$$
$$= d(x_0)$$
$$= (\sum_{i=1}^{n} z_i x_i) \otimes (\sum_{j=1}^{n} z_j x_j)$$
$$= \sum_{i,j=1}^{n} z_i z_j (x_i \otimes x_j).$$

By minimality, $\{x_1, \ldots, x_n\}$ is linearly independent. Hence $z_i^2 = z_i$ for all i, and $z_i z_j = 0$ for $i \neq j$. So $z_i = 0$ or $z_i = 1$ for all i. If $z_j = 1$, then $z_i = 0$ for all $i \neq j$, so $x_0 = x_j$. By minimality, then j = 1 and $\{x_0, x_j\} = \{x_0\}$, which is impossible. So we must have $z_i = 0$ for all i. But then $x_0 = 0$, which is likewise a contradiction.

Exercise 5.4. (a) The defining equation for phases gives

$$\{g^{-1} \circ h \mid g, h \in a\} = \{ \mathrm{id}_x \mid x \in \mathrm{Ob}(\mathbf{G}) \} \{g \circ h^{-1} \mid g, h \in a\}.$$

The inclusion $L \subseteq M$ means: $\forall g, h \in a: \operatorname{cod}(g) = \operatorname{cod}(h) \implies g = h$. The inclusion $M \supseteq R$ means: $\forall g, h \in a: \operatorname{dom}(g) = \operatorname{dom}(h) \implies g = h$. In other words: there can be at most one arrow in a out of each object of **G**, and at most one arrow of a into each object of **G**. Given this, the remaining inclusions $L \supseteq M \subseteq R$ mean: $\forall x \in \operatorname{Ob}(\mathbf{G}) \exists g, h \in a: \operatorname{dom}(g) = x = \operatorname{cod}(h)$. That is: a contains arrows into and out of each object.

(b) Pick an object x; the phase a contains exactly one arrow x→y. If y = x, we have a 1-cycle. Otherwise, a contains exactly one arrow y→z, etc. This process has to end, because the groupoid is finite. Delete all the objects involved in the cycle, and repeat.

For the indiscrete groupoid on \mathbb{Z} , there is a phase $\{n \xrightarrow{!} n+1 \mid n \in \mathbb{Z}\}$