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Week 5: Monoids and comonoids
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Overview

v

Monoids: multiplication of states

v

Comonoids: ‘copying’ of states

v

Cloning: prove no-cloning and no-deleting

v

Products: characterize when tensor product is product

N
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Copying

What does copying object A mean?
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Copying

What does copying object A mean? Type should be A LA®A
» shouldn’t matter if we switch both output copies
» if copying twice, shouldn’t matter if take first or second copy

» output should equal input: uses deletion A-% 1T
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Copying

What does copying object A mean? Type should be A LA®A
» shouldn’t matter if we switch both output copies
» if copying twice, shouldn’t matter if take first or second copy

» output should equal input: uses deletion A-% 1T

| 9 b

cocommutativity coassociativity counitality

Triple (A, d,e) is called (cocommutative) comonoid.
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Example comonoids

» In Set, the tensor product is a Cartesian product.
Every object carries a unique comonoid with comultiplication
a — (a,a) and counit a — e, which is cocommutative.



Example comonoids

» In Set, the tensor product is a Cartesian product.
Every object carries a unique comonoid with comultiplication
a — (a,a) and counit a — e, which is cocommutative.

» In Rel, any group G forms a comonoid with
comultiplication g ~ (h,h~1g) and counit 1 ~ e.
Counitality: LHS is g ~ h where h~1g = 1, RHS is g ~ 1~ !g.
The comonoid is cocommutative iff the group is abelian.
Cocommutativity: LHS is g ~ (h~1g,h), RHS is g ~ (k,k~'g).
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Example comonoids

» In Set, the tensor product is a Cartesian product.
Every object carries a unique comonoid with comultiplication
a — (a,a) and counit a — e, which is cocommutative.

» In Rel, any group G forms a comonoid with
comultiplication g ~ (h,h~1g) and counit 1 ~ e.
Counitality: LHS is g ~ h where h~1g = 1, RHS is g ~ 1~ !g.
The comonoid is cocommutative iff the group is abelian.
Cocommutativity: LHS is g ~ (h~1g,h), RHS is g ~ (k,k~'g).

» In FHilb, basis {e;} for a Hilbert space gives a cocommutative

comonoid, with comultiplication e; — e; ® e; and counit e; — 1.
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Monoids

Dually:
! !
commutativity associativity unitality

Triple (A, m, u) is (commutative) monoid. Examples:
» Tensor unit I, with multiplication p; = A\; and unit id;.
» A monoid in Set is just an ordinary monoid; e.g. any group.

» A monoid in Vect is an algebra: a set where we can add vectors
and multiply with scalars, and also multiply vectors bilinearly.
E.g. C" under pointwise multiplication and unit (1,1,...,1).
E.g. vector space of n-by-n matrices with matrix multiplication.
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Draw comultiplication as'‘¢’, counit as ¢, multiplication as,, unit as é.
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Homomorphisms

Draw comultiplication as'‘¢’, counit as ¢, multiplication as,, unit as é.

Choosing bases {d;} and {e;} makes H and K in FHilb comonoids.
Functions {d;} — {e;} respect comultiplication and counit.

A comonoid homomorphism (A,',¢) — (B,¥,¢) is A 1, B with:

Ry

Dually: monoid homomorphism.

Given monoidal category, can build new category of (co)monoids
and homomorphisms.



Example homomorphisms

» In Set, any function A £, B is a comonoid homomorphism:

(f xf)(a,a) = (f(a).f(a)), and f(a) = e.



Example homomorphisms

» In Set, any function A £, B is a comonoid homomorphism:

(f % f)(@,a) = (f(a).f(a)), and f(a) = s.

» In Rel, any surjective homomorphism G L Hof groups is a

comonoid homomorphism. Preservation of comultiplication:
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Example homomorphisms

» In Set, any function A £, B is a comonoid homomorphism:

(f % f)(@,a) = (f(a).f(a)), and f(a) = s.

» In Rel, any surjective homomorphism G L Hof groups is a

comonoid homomorphism. Preservation of comultiplication:

LHS is g ~ (h,h~'f(g)), RHS is g ~ (f(¢).f(g")"'f(g)).

» In FHilb, any function {d;} ER {e;} between bases extends
linearly to a comonoid homomorphism:

d(f(di)) = f(di) ©f(di) and e(f(d))) = 1 = e(d;).
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If braiding is symmetry: categorical product.

Examples:
» In Set, product comonoid on A, B is unique comonoid on A x B.
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Product of monoids

Can combine two (co)monoids to single one using braiding:

\
[

If braiding is symmetry: categorical product.

Examples:
» In Set, product comonoid on A, B is unique comonoid on A x B.

» In Rel, the product comonoid of groups G and H is comonoid of
G x H with multiplication (gl, h])(gz, hz) = (glgz, hlhz).

» In FHilb, the product of comonoids on H and K that copy bases
{d;} and {e;} is the comonoid copying basis {d; ® ¢;} of H ® K.
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Dagger

Monoidal dagger category has duality between monoids and
comonoids: (A,d, e) is a comonoid if and only if (A, d',ef) is a
monoid.
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Dagger

Monoidal dagger category has duality between monoids and
comonoids: (A,d,e) is a comonoid if and only if (A,d', ef) is a
monoid.

Example:

» In Rel: comultiplication g ~ (h,h~'g) for group G turns into
multiplication (g, h) ~ gh.
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Closure

Morphisms transform input into output.
But sometimes want to transform morphisms into morphisms.
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Closure

Morphisms transform input into output.
But sometimes want to transform morphisms into morphisms.

Can handle this using names and conames. E.g.:
FHilb(H,K) = {H LK | f linear}

is vector space with pointwise operations (f + g)(x) = f(x) + g(x),
Hilbert space with trace inner product (f|g) = Tr(ff o g).

To transform morphisms, encode them as vectors in function spaces.
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Matrices

One of most important features of matrices: they can be multiplied.
In other words, linear maps C" — C" can be composed.

Using closure, can internalize this: the vector space M, of matrices is
a monoid that lives in the same category as C".



Matrices

One of most important features of matrices: they can be multiplied.
In other words, linear maps C" — C" can be composed.

Using closure, can internalize this: the vector space M, of matrices is
a monoid that lives in the same category as C".

More generally, if an object A in a monoidal category has a dual A*,
then operators A =+ A correspond bijectively to states I LA ®A.
Composition A 7, A of operators transfers to states [ S8 g ®A:

So A* ® A canonically becomes monoid.
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Pair of pants

If A 4 A* in monoidal category, then A* ® A is a monoid:

T
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Pair of pants

If A 4 A* in monoidal category, then A* ® A is a monoid:

ZANEERS
ZAR A
2 NNEANN

Proof.

12/25



Matrix algebras

Example: pair of pants on C" in FHilb is the algebra M, of n-by-n
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Matrix algebras

Example: pair of pants on C" in FHilb is the algebra M, of n-by-n
matrices under matrix multiplication.

Proof: Fix basis {|i)} for A = C", so A* ® A has basis {(j| ® |i)}.
Define map A* ® A — M, by mapping (j| ® [i) to the matrix e;

with a single entry 1 on row i and column j and zeroes elsewhere.



Matrix algebras

Example: pair of pants on C" in FHilb is the algebra M, of n-by-n
matrices under matrix multiplication.

Proof: Fix basis {|i)} for A = C", so A* ® A has basis {(j| ® |i)}.

Define map A* ® A — M, by mapping (j| ® [i) to the matrix e;
with a single entry 1 on row i and column j and zeroes elsewhere.

This bijection respects multiplication:

/\ |®\l ifj=k] e ifi=k] _
ifj £k 0 ifj£k | U

i j kI



Pair of pants are universal

Cayley: any group G is a subgroup of a symmetric one.
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Pair of pants are universal

Cayley: any group G is a subgroup of a symmetric one.

Symmetric group Sym(A): bijections A— A under composition.
Embedding R: G — Sym(G) is regular representation g — Rs.

Rg(h)=g-h

Already works for monoids: any M is submonoid of Set(M, M).
Closure: instead of injective homomorphism M & Set(M, M),
consider relation M — M* x M (latter with pair of pants).

Abstract embedding of (M,4,,¢) into M 4 M*:

i
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Cayley’s theorem
Any monoid (A,4,,4) in a monoidal category with A 4 A* has monoid
homomorphism to (A* ® A,/\,~) with right inverse.
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Cayley’s theorem
Any monoid (A,4,,4) in a monoidal category with A 4 A* has monoid
homomorphism to (A* ® A,/\,~) with right inverse.

Proof. R preserves units:
_ b‘j _ U
@)

R preserves multiplication:

T4

Finally, R has a right inverse . O
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Uniform deleting
Counit A -% [ tells us we can ‘delete’ A if we want to.
What does it mean to have deletion systematically on every object?
A monoidal category has uniform deleting if there is a natural

transformation A 4y I with e; = id;, such that:

A®B

ea ®V Y@;B

I®I—>I

Uniform deleting possible if and only if I is terminal.

Proof. Uniform deleting gives a morphism A %4> I for each object A.
Naturality and e; = id; then show any morphism A L1 equals ex.
Conversely, if I is terminal, choose e4 : A — I uniquely. O
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No-deleting theorem

A preorder is a category that has at most one morphism A — B for
any pair of objects A, B.

Preorders are degenerate, with only process of each type.
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No-deleting theorem

A preorder is a category that has at most one morphism A — B for
any pair of objects A, B.

Preorders are degenerate, with only process of each type.

Theorem: if a monoidal category with duals has uniform deleting,
then it is a preorder.
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No-deleting theorem

A preorder is a category that has at most one morphism A — B for
any pair of objects A, B.

Preorders are degenerate, with only process of each type.

Theorem: if a monoidal category with duals has uniform deleting,
then it is a preorder.

Proof. Let A £5; B be morphisms. Naturality of e gives:

CAQB*

A®B* I
Lf{ Jid,
e = ld]

I I

So Lf = eagp+, and similarly g1 = eagp~. Hence f = g.

17/25



Uniform copying
Question: what does it mean to copy objects systematically?
Answer: copying must respect composition, tensor products.
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Uniform copying
Question: what does it mean to copy objects systematically?
Answer: copying must respect composition, tensor products.

A braided monoidal category has uniform copying if there is a
natural transformation A > A ® A with d; = p1, satisfying
cocommutativity and coassociativity, and:

AB AB A B A B
~

] = [ ]

A B A B
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Uniform copying
Question: what does it mean to copy objects systematically?
Answer: copying must respect composition, tensor products.

A braided monoidal category has uniform copying if there is a
natural transformation A > A ® A with d; = p1, satisfying
cocommutativity and coassociativity, and:

AB AB A B A B
~

(6] = [ aw ]
A B A B

Naturality and d; = p; look like this for arbitrary A 1, B:

B B BB
[
= 1 =
A A
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Copying states

Example: Set has uniform copying maps a — (a,a):

di(e) = (e, ) = p1(e)
both maps A x B—A x B x A x B are (a,b) — (a,b,a,b)
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Copying states

Example: Set has uniform copying maps a — (a,a):

di(e) = (e, ) = p1(e)
both maps A x B—A x B x A x B are (a,b) — (a,b,a,b)

In a braided monoidal category, a state I % A is copyable with respect
to a map A 4, A ® A when:

2-1l

In braided monoidal category with uniform copying, any state is
copyable.

Proof. If there is uniform copying, then, by naturality of the copying
maps, we have dy ou = (u ® u) o py for each state I -+ A. O



Duals vs copying

If a braided monoidal category with duals has uniform copying:

A" A AT A

AUA*A:@
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Duals vs copying

If a braided monoidal category with duals has uniform copying:

A" A AT A

Proof. First, consider the following equality (x):

A*

A
[ -

A* A
A*AA*A_U
/ / = '




Duals vs copying

If a braided monoidal category with duals has uniform copying:

A" A AT A

Proof. First, consider the following equality (x):

A A A A

(O N N ey
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Duals vs copying

In a braided monoidal category with duals and uniform copying:
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Duals vs copying

In a braided monoidal category with duals and uniform copying:

A A A A
<=
< =
A A A A
Proof.
A A A A

—
I
I
/\\
k3



No-cloning theorem
If a braided monoidal category with duals has uniform copying,

every endomorphism is a multiple of the identity, f = Tr(f) e id:
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No-cloning theorem
If a braided monoidal category with duals has uniform copying,
every endomorphism is a multiple of the identity, f = Tr(f) e id:

Proof.

| 1

N
]
N
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» tensor products are products and the tensor unit is terminal
» it has uniform copying and deleting, satisfying counitality
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Products

The following are equivalent for a symmetric monoidal category:
» tensor products are products and the tensor unit is terminal
» it has uniform copying and deleting, satisfying counitality

Proof. If cartesian, unique A 4+ and dy = (ﬁz) provide uniform
copying and deleting.

For converse need to prove A ® B is product of A, B.
For CL>Aand C £, B, define

(5) = =g od
pa = pao(ida®ep): A®B—A
pB:ABO(€A®idB)2A®B—>B

N



Proof. Suppose C ™ A ® B satisfies pgsom = f and pgom = g.

)



Proof. Suppose C ™ A @ B satisfies p, om = f and pg o m = g. Then:

Hence mediating morphisms, if they exist, are unique.
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Proof. Suppose C ™ A @ B satisfies p, om = f and pg o m = g. Then:

Hence mediating morphisms, if they exist, are unique.

Finally, we show the universal morphism has the right properties:

A similar result holds for g. O, ..



Summary

v

Monoids: multiplication on states

v

Comonoids: ‘copying’ of states

v

Closure: operators form monoids

v

Cloning: no-cloning and no-deleting
» Products: characterize when tensor product is product

Next week: interaction between monoids and comonoids

N
3
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