Categories and Quantum Informatics Week 5: Monoids and comonoids

Chris Heunen

Overview

- Monoids: multiplication of states
- Comonoids: 'copying' of states
- Cloning: prove no-cloning and no-deleting
- Products: characterize when tensor product is product

What does copying object *A* mean?

What does copying object *A* mean? Type should be $A \xrightarrow{d} A \otimes A$

What does copying object *A* mean? Type should be $A \xrightarrow{d} A \otimes A$

shouldn't matter if we switch both output copies

cocommutativity

What does copying object *A* mean? Type should be $A \xrightarrow{d} A \otimes A$

- shouldn't matter if we switch both output copies
- if copying twice, shouldn't matter if take first or second copy

 $\begin{bmatrix} d \\ d \\ d \end{bmatrix} = \begin{bmatrix} d \\ d \\ d \end{bmatrix}$

cocommutativity

coassociativity

What does copying object *A* mean? Type should be $A \xrightarrow{d} A \otimes A$

- shouldn't matter if we switch both output copies
- if copying twice, shouldn't matter if take first or second copy
- output should equal input: uses deletion $A \xrightarrow{e} I$

cocommutativity

coassociativity

counitality

What does copying object *A* mean? Type should be $A \xrightarrow{d} A \otimes A$

- shouldn't matter if we switch both output copies
- ▶ if copying twice, shouldn't matter if take first or second copy
- output should equal input: uses deletion $A \xrightarrow{e} I$

Triple (A, d, e) is called (cocommutative) comonoid.

Example comonoids

In Set, the tensor product is a Cartesian product. Every object carries a unique comonoid with comultiplication *a* → (*a*, *a*) and counit *a* → •, which is cocommutative.

Example comonoids

- In Set, the tensor product is a Cartesian product. Every object carries a unique comonoid with comultiplication *a* → (*a*, *a*) and counit *a* → •, which is cocommutative.
- In Rel, any group *G* forms a comonoid with comultiplication g ~ (h, h⁻¹g) and counit 1 ~ ●.
 Counitality: LHS is g ~ h where h⁻¹g = 1, RHS is g ~ 1⁻¹g. The comonoid is cocommutative iff the group is abelian.
 Cocommutativity: LHS is g ~ (h⁻¹g, h), RHS is g ~ (k, k⁻¹g).

Example comonoids

- In Set, the tensor product is a Cartesian product. Every object carries a unique comonoid with comultiplication *a* → (*a*, *a*) and counit *a* → ●, which is cocommutative.
- In Rel, any group *G* forms a comonoid with comultiplication *g* ~ (*h*, *h*⁻¹*g*) and counit 1 ~ ●.
 Counitality: LHS is *g* ~ *h* where *h*⁻¹*g* = 1, RHS is *g* ~ 1⁻¹*g*. The comonoid is cocommutative iff the group is abelian.
 Cocommutativity: LHS is *g* ~ (*h*⁻¹*g*, *h*), RHS is *g* ~ (*k*, *k*⁻¹*g*).
- ▶ In **FHilb**, basis $\{e_i\}$ for a Hilbert space gives a cocommutative comonoid, with comultiplication $e_i \mapsto e_i \otimes e_i$ and counit $e_i \mapsto 1$.

Dually:

commutativity

associativity

unitality

Dually:

Triple (A, m, u) is (commutative) monoid.

Dually:

Triple (A, m, u) is (commutative) monoid. Examples:

• Tensor unit *I*, with multiplication $\rho_I = \lambda_I$ and unit id_{*I*}.

Dually:

Triple (A, m, u) is (commutative) monoid. Examples:

- Tensor unit *I*, with multiplication $\rho_I = \lambda_I$ and unit id_{*I*}.
- A monoid in **Set** is just an ordinary monoid; e.g. any group.

Dually:

Triple (A, m, u) is (commutative) monoid. Examples:

- Tensor unit *I*, with multiplication $\rho_I = \lambda_I$ and unit id_{*I*}.
- A monoid in **Set** is just an ordinary monoid; e.g. any group.
- A monoid in Vect is an *algebra*: a set where we can add vectors and multiply with scalars, and also multiply vectors bilinearly.
 E.g. Cⁿ under pointwise multiplication and unit (1, 1, ..., 1).
 E.g. vector space of *n*-by-*n* matrices with matrix multiplication.

Draw comultiplication as \forall , counit as 9, multiplication as \blacklozenge , unit as \blacklozenge .

Draw comultiplication as $\forall i$, counit as ϑ , multiplication as \bigstar , unit as \blacklozenge . Choosing bases $\{d_i\}$ and $\{e_j\}$ makes H and K in **FHilb** comonoids.

Draw comultiplication as \forall , counit as ϑ , multiplication as \bigstar , unit as \blacklozenge . Choosing bases $\{d_i\}$ and $\{e_j\}$ makes H and K in FHilb comonoids. Functions $\{d_i\} \rightarrow \{e_j\}$ respect comultiplication and counit.

Draw comultiplication as $\forall i$, counit as ϑ , multiplication as \bigstar , unit as \blacklozenge . Choosing bases $\{d_i\}$ and $\{e_j\}$ makes H and K in **FHilb** comonoids. Functions $\{d_i\} \rightarrow \{e_j\}$ respect comultiplication and counit.

A comonoid homomorphism $(A, \forall \gamma, \varphi) \rightarrow (B, \forall \gamma, \varphi)$ is $A \xrightarrow{f} B$ with:

Draw comultiplication as $\forall i$, counit as ϑ , multiplication as d_i , unit as d_i . Choosing bases $\{d_i\}$ and $\{e_j\}$ makes H and K in **FHilb** comonoids. Functions $\{d_i\} \rightarrow \{e_j\}$ respect comultiplication and counit.

A comonoid homomorphism $(A, \forall \gamma, \varphi) \rightarrow (B, \forall \gamma, \varphi)$ is $A \xrightarrow{f} B$ with:

Dually: monoid homomorphism.

Draw comultiplication as $\forall i$, counit as ϑ , multiplication as \bigstar , unit as \blacklozenge . Choosing bases $\{d_i\}$ and $\{e_j\}$ makes H and K in **FHilb** comonoids. Functions $\{d_i\} \rightarrow \{e_j\}$ respect comultiplication and counit.

A comonoid homomorphism $(A, \forall \gamma, \varphi) \rightarrow (B, \forall \gamma, \varphi)$ is $A \xrightarrow{f} B$ with:

Dually: monoid homomorphism.

Given monoidal category, can build new category of (co)monoids and homomorphisms.

Example homomorphisms

▶ In Set, any function $A \xrightarrow{f} B$ is a comonoid homomorphism: $(f \times f)(a, a) = (f(a), f(a))$, and $f(a) = \bullet$.

Example homomorphisms

- ▶ In **Set**, any function $A \xrightarrow{f} B$ is a comonoid homomorphism: $(f \times f)(a, a) = (f(a), f(a))$, and $f(a) = \bullet$.
- In Rel, any surjective homomorphism G ^f→ H of groups is a comonoid homomorphism. Preservation of comultiplication: LHS is g ~ (h, h⁻¹f(g)), RHS is g ~ (f(g'), f(g')⁻¹f(g)).

Example homomorphisms

- ▶ In **Set**, any function $A \xrightarrow{f} B$ is a comonoid homomorphism: $(f \times f)(a, a) = (f(a), f(a))$, and $f(a) = \bullet$.
- In Rel, any surjective homomorphism G ^f→ H of groups is a comonoid homomorphism. Preservation of comultiplication: LHS is g ~ (h, h⁻¹f(g)), RHS is g ~ (f(g'), f(g')⁻¹f(g)).
- In FHilb, any function {d_i} → {e_j} between bases extends linearly to a comonoid homomorphism: d(f(d_i)) = f(d_i) ⊗ f(d_i) and e(f(d_j)) = 1 = e(d_j).

Can combine two (co)monoids to single one using braiding:

 $\langle \gamma \gamma \rangle$

Can combine two (co)monoids to single one using braiding:

If braiding is symmetry: categorical product.

Can combine two (co)monoids to single one using braiding:

 $\langle \gamma \gamma \rangle$

If braiding is symmetry: categorical product.

Examples:

• In **Set**, product comonoid on A, B is unique comonoid on $A \times B$.

Can combine two (co)monoids to single one using braiding:

If braiding is symmetry: categorical product.

Examples:

- ▶ In **Set**, product comonoid on A, B is unique comonoid on $A \times B$.
- ► In Rel, the product comonoid of groups G and H is comonoid of G × H with multiplication (g₁, h₁)(g₂, h₂) = (g₁g₂, h₁h₂).

Can combine two (co)monoids to single one using braiding:

If braiding is symmetry: categorical product.

Examples:

- ► In **Set**, product comonoid on A, B is unique comonoid on $A \times B$.
- ► In Rel, the product comonoid of groups G and H is comonoid of G × H with multiplication (g₁, h₁)(g₂, h₂) = (g₁g₂, h₁h₂).
- ▶ In **FHilb**, the product of comonoids on *H* and *K* that copy bases $\{d_i\}$ and $\{e_j\}$ is the comonoid copying basis $\{d_i \otimes e_j\}$ of $H \otimes K$.

Monoidal dagger category has duality between monoids and comonoids: (A, d, e) is a comonoid if and only if $(A, d^{\dagger}, e^{\dagger})$ is a monoid.

Monoidal dagger category has duality between monoids and comonoids: (A, d, e) is a comonoid if and only if $(A, d^{\dagger}, e^{\dagger})$ is a monoid.

Example:

► In Rel: comultiplication g ~ (h, h⁻¹g) for group G turns into multiplication (g, h) ~ gh.

Closure

Morphisms transform *input* into *output*. But sometimes want to transform morphisms into morphisms.

Closure

Morphisms transform *input* into *output*. But sometimes want to transform morphisms into morphisms.

Can handle this using names and conames. E.g.:

$$\mathbf{FHilb}(H,K) = \{H \xrightarrow{f} K \mid f \text{ linear}\}$$

is vector space with pointwise operations (f + g)(x) = f(x) + g(x), Hilbert space with *trace inner product* $\langle f | g \rangle = \text{Tr}(f^{\dagger} \circ g)$.

To transform morphisms, encode them as vectors in function spaces.

Matrices

One of most important features of matrices: they can be multiplied. In other words, linear maps $\mathbb{C}^n \to \mathbb{C}^n$ can be composed. Using closure, can *internalize* this: the vector space \mathbb{M}_n of matrices is a monoid that lives in the same category as \mathbb{C}^n .

Matrices

One of most important features of matrices: they can be multiplied. In other words, linear maps $\mathbb{C}^n \to \mathbb{C}^n$ can be composed. Using closure, can *internalize* this: the vector space \mathbb{M}_n of matrices is a monoid that lives in the same category as \mathbb{C}^n .

More generally, if an object *A* in a monoidal category has a dual A^* , then operators $A \xrightarrow{f} A$ correspond bijectively to states $I \xrightarrow{\lceil f \rceil} A^* \otimes A$. Composition $A \xrightarrow{g \circ f} A$ of operators transfers to states $I \xrightarrow{\lceil g \circ f \rceil} A^* \otimes A$:

So $A^* \otimes A$ canonically becomes monoid.

Pair of pants

If $A \dashv A^*$ in monoidal category, then $A^* \otimes A$ is a monoid:

Pair of pants

If $A \dashv A^*$ in monoidal category, then $A^* \otimes A$ is a monoid:

Example: pair of pants on \mathbb{C}^n in **FHilb** is the algebra \mathbb{M}_n of *n*-by-*n* matrices under matrix multiplication.

Example: pair of pants on \mathbb{C}^n in **FHilb** is the algebra \mathbb{M}_n of *n*-by-*n* matrices under matrix multiplication.

Proof: Fix basis $\{|i\rangle\}$ for $A = \mathbb{C}^n$, so $A^* \otimes A$ has basis $\{\langle j | \otimes |i\rangle\}$.

Example: pair of pants on \mathbb{C}^n in **FHilb** is the algebra \mathbb{M}_n of *n*-by-*n* matrices under matrix multiplication.

Proof: Fix basis $\{|i\rangle\}$ for $A = \mathbb{C}^n$, so $A^* \otimes A$ has basis $\{\langle j | \otimes |i\rangle\}$.

Define map $A^* \otimes A \to \mathbb{M}_n$ by mapping $\langle j | \otimes | i \rangle$ to the matrix e_{ij} with a single entry 1 on row *i* and column *j* and zeroes elsewhere.

Example: pair of pants on \mathbb{C}^n in **FHilb** is the algebra \mathbb{M}_n of *n*-by-*n* matrices under matrix multiplication.

Proof: Fix basis $\{|i\rangle\}$ for $A = \mathbb{C}^n$, so $A^* \otimes A$ has basis $\{\langle j | \otimes |i\rangle\}$. Define map $A^* \otimes A \to \mathbb{M}_n$ by mapping $\langle j | \otimes |i\rangle$ to the matrix e_{ij} with a single entry 1 on row *i* and column *j* and zeroes elsewhere. This bijection respects multiplication:

$$\bigwedge_{i=j}^{k} \left\{ \begin{array}{cc} \langle i | \otimes | l \rangle & \text{if } j = k \\ 0 & \text{if } j \neq k \end{array} \right\} \longmapsto \left[\begin{array}{cc} e_{il} & \text{if } j = k \\ 0 & \text{if } j \neq k \end{array} \right] = e_{ij} e_{kl}$$

Cayley: any group G is a subgroup of a symmetric one.

Cayley: any group G is a subgroup of a symmetric one.

Symmetric group Sym(A): bijections $A \rightarrow A$ under composition. Embedding $R: G \rightarrow Sym(G)$ is regular representation $g \mapsto R_g$.

$$R_g(h) = g \cdot h$$

Cayley: any group G is a subgroup of a symmetric one.

Symmetric group Sym(A): bijections $A \rightarrow A$ under composition. Embedding $R: G \rightarrow Sym(G)$ is regular representation $g \mapsto R_g$.

$$R_g(h) = g \cdot h$$

Already works for monoids: any *M* is submonoid of Set(M, M).

Cayley: any group G is a subgroup of a symmetric one.

Symmetric group Sym(A): bijections $A \rightarrow A$ under composition. Embedding $R: G \rightarrow Sym(G)$ is regular representation $g \mapsto R_g$.

$$R_g(h) = g \cdot h$$

Already works for monoids: any *M* is submonoid of **Set**(*M*, *M*). Closure: instead of injective homomorphism $M \xrightarrow{R}$ **Set**(*M*, *M*), consider relation $M \rightarrow M^* \times M$ (latter with pair of pants).

Cayley: any group G is a subgroup of a symmetric one.

Symmetric group Sym(A): bijections $A \rightarrow A$ under composition. Embedding $R: G \rightarrow Sym(G)$ is regular representation $g \mapsto R_g$.

$$R_g(h) = g \cdot h$$

Already works for monoids: any *M* is submonoid of **Set**(*M*, *M*). Closure: instead of injective homomorphism $M \xrightarrow{R}$ **Set**(*M*, *M*), consider relation $M \rightarrow M^* \times M$ (latter with pair of pants).

Abstract embedding of (M, \diamond, \diamond) into $M \dashv M^*$:

$$\begin{array}{c} \begin{array}{c} & \\ R \\ \hline \end{array} \\ \end{array} = \begin{array}{c} & \\ \end{array}$$

Cayley's theorem

Any monoid (A, \diamond, b) in a monoidal category with $A \dashv A^*$ has monoid homomorphism to $(A^* \otimes A, \land, \smile)$ with right inverse.

$$\begin{array}{c} \underbrace{\downarrow}_{R} \\ \hline R \\ \hline \end{array} = \begin{array}{c} \underbrace{\downarrow}_{R} \\ \hline \end{array}$$

Cayley's theorem

Any monoid (A, \diamond, \flat) in a monoidal category with $A \dashv A^*$ has monoid homomorphism to $(A^* \otimes A, \land, \smile)$ with right inverse.

Proof. *R* preserves units:

Cayley's theorem

Any monoid (A, \diamond, δ) in a monoidal category with $A \dashv A^*$ has monoid homomorphism to $(A^* \otimes A, \land, \smile)$ with right inverse.

Proof. *R* preserves units:

R preserves multiplication:

Finally, *R* has a right inverse φ .

Counit $A \stackrel{e}{\longrightarrow} I$ tells us we can 'delete' A if we want to. What does it mean to have deletion *systematically* on every object?

Counit $A \xrightarrow{e} I$ tells us we can 'delete' A if we want to. What does it mean to have deletion *systematically* on every object?

A monoidal category has uniform deleting if there is a natural transformation $A \xrightarrow{e_A} I$ with $e_I = id_I$, such that:

Counit $A \xrightarrow{e} I$ tells us we can 'delete' A if we want to. What does it mean to have deletion *systematically* on every object?

A monoidal category has uniform deleting if there is a natural transformation $A \xrightarrow{e_A} I$ with $e_I = id_I$, such that:

Uniform deleting possible if and only if *I* is terminal.

Counit $A \xrightarrow{e} I$ tells us we can 'delete' A if we want to. What does it mean to have deletion *systematically* on every object?

A monoidal category has uniform deleting if there is a natural transformation $A \xrightarrow{e_A} I$ with $e_I = id_I$, such that:

Uniform deleting possible if and only if *I* is terminal.

Proof. Uniform deleting gives a morphism $A \xrightarrow{e_A} I$ for each object A. Naturality and $e_I = id_I$ then show any morphism $A \xrightarrow{f} I$ equals e_A . Conversely, if I is terminal, choose $e_A : A \to I$ uniquely.

No-deleting theorem

A preorder is a category that has at most one morphism $A \rightarrow B$ for any pair of objects A, B.

Preorders are degenerate, with only process of each type.

No-deleting theorem

A preorder is a category that has at most one morphism $A \rightarrow B$ for any pair of objects A, B.

Preorders are degenerate, with only process of each type.

Theorem: if a monoidal category with duals has uniform deleting, then it is a preorder.

No-deleting theorem

A preorder is a category that has at most one morphism $A \rightarrow B$ for any pair of objects A, B.

Preorders are degenerate, with only process of each type.

Theorem: if a monoidal category with duals has uniform deleting, then it is a preorder.

Proof. Let $A \xrightarrow{f,g} B$ be morphisms. Naturality of *e* gives:

$$\begin{array}{c|c} A \otimes B^* & \xrightarrow{e_{A \otimes B^*}} & I \\ \downarrow f \lrcorner \downarrow & & \downarrow id_I \\ I & \xrightarrow{e_I = id_I} & \downarrow I \end{array}$$

So $\lfloor f \rfloor = e_{A \otimes B^*}$, and similarly $\lfloor g \rfloor = e_{A \otimes B^*}$. Hence f = g.

Uniform copying

Question: what does it mean to *copy* objects *systematically*? Answer: copying must respect composition, tensor products.

Uniform copying

Question: what does it mean to *copy* objects *systematically*? Answer: copying must respect composition, tensor products.

A braided monoidal category has uniform copying if there is a natural transformation $A \xrightarrow{d_A} A \otimes A$ with $d_I = \rho_I$, satisfying cocommutativity and coassociativity, and:

Uniform copying

Question: what does it mean to *copy* objects *systematically*? Answer: copying must respect composition, tensor products.

A braided monoidal category has uniform copying if there is a natural transformation $A \xrightarrow{d_A} A \otimes A$ with $d_I = \rho_I$, satisfying cocommutativity and coassociativity, and:

Naturality and $d_I = \rho_I$ look like this for arbitrary $A \xrightarrow{f} B$:

Example: Set has uniform copying maps $a \mapsto (a, a)$: $d_1(\bullet) = (\bullet, \bullet) = \rho_1(\bullet)$ both maps $A \times B \to A \times B \times A \times B$ are $(a, b) \mapsto (a, b, a, b)$

Example: Set has uniform copying maps $a \mapsto (a, a)$: $d_1(\bullet) = (\bullet, \bullet) = \rho_1(\bullet)$ both maps $A \times B \rightarrow A \times B \times A \times B$ are $(a, b) \mapsto (a, b, a, b)$

In a braided monoidal category, a state $I \xrightarrow{u} A$ is copyable with respect to a map $A \xrightarrow{d_A} A \otimes A$ when:

Example: Set has uniform copying maps $a \mapsto (a, a)$: $d_1(\bullet) = (\bullet, \bullet) = \rho_1(\bullet)$ both maps $A \times B \to A \times B \times A \times B$ are $(a, b) \mapsto (a, b, a, b)$

In a braided monoidal category, a state $I \xrightarrow{u} A$ is copyable with respect to a map $A \xrightarrow{d_A} A \otimes A$ when:

In braided monoidal category with uniform copying, any state is copyable.

Example: Set has uniform copying maps $a \mapsto (a, a)$: $d_1(\bullet) = (\bullet, \bullet) = \rho_1(\bullet)$ both maps $A \times B \to A \times B \times A \times B$ are $(a, b) \mapsto (a, b, a, b)$

In a braided monoidal category, a state $I \xrightarrow{u} A$ is copyable with respect to a map $A \xrightarrow{d_A} A \otimes A$ when:

In braided monoidal category with uniform copying, any state is copyable.

Proof. If there is uniform copying, then, by naturality of the copying maps, we have $d_A \circ u = (u \otimes u) \circ \rho_I$ for each state $I \xrightarrow{u} A$.

If a braided monoidal category with duals has uniform copying:

$$A^* \quad A \quad A^* \quad A \quad = \quad \bigcup^{A^* \quad A \quad A^* \quad A}$$

If a braided monoidal category with duals has uniform copying:

$$A^* \quad A \quad A^* \quad A \quad = \quad \bigcup^{A^* \quad A \quad A^* \quad A}$$

Proof. First, consider the following equality (*):

$$A^* A A^* A = \underbrace{A^* A A^* A}_{d_I} = \underbrace{d_{A^* \otimes A}}_{d_A} = \underbrace{d_{A^* \otimes A}}_{d_A} = \underbrace{d_{A^*}}_{d_A}$$

If a braided monoidal category with duals has uniform copying:

$$A^* \quad A \quad A^* \quad A \quad = \quad \bigcup^{A^* \quad A \quad A^* \quad A}$$

Proof. First, consider the following equality (*):

In a braided monoidal category with duals and uniform copying:

In a braided monoidal category with duals and uniform copying:

Proof.

No-cloning theorem

If a braided monoidal category with duals has uniform copying, every endomorphism is a multiple of the identity, $f = \text{Tr}(f) \bullet \text{id}$:

No-cloning theorem

If a braided monoidal category with duals has uniform copying, every endomorphism is a multiple of the identity, $f = \text{Tr}(f) \bullet \text{id}$:

Proof.

Products

The following are equivalent for a symmetric monoidal category:

- tensor products are products and the tensor unit is terminal
- ▶ it has uniform copying and deleting, satisfying counitality

Products

The following are equivalent for a symmetric monoidal category:

- tensor products are products and the tensor unit is terminal
- it has uniform copying and deleting, satisfying counitality

Proof. If cartesian, unique $A \xrightarrow{e_A} I$ and $d_A = \begin{pmatrix} id_A \\ id_A \end{pmatrix}$ provide uniform copying and deleting.

Products

The following are equivalent for a symmetric monoidal category:

- tensor products are products and the tensor unit is terminal
- it has uniform copying and deleting, satisfying counitality

Proof. If cartesian, unique $A \xrightarrow{e_A} I$ and $d_A = \begin{pmatrix} id_A \\ id_A \end{pmatrix}$ provide uniform copying and deleting.

For converse, need to prove $A \otimes B$ is product of A, B. For $C \xrightarrow{f} A$ and $C \xrightarrow{g} B$, define

$$\begin{pmatrix} f \\ g \end{pmatrix} = (f \otimes g) \circ d p_A = \rho_A \circ (\mathrm{id}_A \otimes e_B) : A \otimes B \to A p_B = \lambda_B \circ (e_A \otimes \mathrm{id}_B) : A \otimes B \to B$$

Proof. Suppose $C \xrightarrow{m} A \otimes B$ satisfies $p_A \circ m = f$ and $p_B \circ m = g$.

Proof. Suppose $C \xrightarrow{m} A \otimes B$ satisfies $p_A \circ m = f$ and $p_B \circ m = g$. Then:

Hence mediating morphisms, if they exist, are unique.

Proof. Suppose $C \xrightarrow{m} A \otimes B$ satisfies $p_A \circ m = f$ and $p_B \circ m = g$. Then:

Hence mediating morphisms, if they exist, are unique.

Finally, we show the universal morphism has the right properties:

A similar result holds for *g*.

Summary

- Monoids: multiplication on states
- Comonoids: 'copying' of states
- Closure: operators form monoids
- Cloning: no-cloning and no-deleting
- Products: characterize when tensor product is product

Next week: interaction between monoids and comonoids