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Overview

I Monoids: multiplication of states
I Comonoids: ‘copying’ of states
I Cloning: prove no-cloning and no-deleting
I Products: characterize when tensor product is product
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Copying

What does copying object A mean?

Type should be A d A⊗ A

I shouldn’t matter if we switch both output copies
I if copying twice, shouldn’t matter if take first or second copy
I output should equal input: uses deletion A e I
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cocommutativity coassociativity counitality

Triple (A, d, e) is called (cocommutative) comonoid.
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Example comonoids

I In Set, the tensor product is a Cartesian product.
Every object carries a unique comonoid with comultiplication
a 7→ (a, a) and counit a 7→ •, which is cocommutative.

I In Rel, any group G forms a comonoid with
comultiplication g ∼ (h, h−1g) and counit 1 ∼ •.
Counitality: LHS is g ∼ h where h−1g = 1, RHS is g ∼ 1−1g.
The comonoid is cocommutative iff the group is abelian.
Cocommutativity: LHS is g ∼ (h−1g, h), RHS is g ∼ (k, k−1g).

I In FHilb, basis {ei} for a Hilbert space gives a cocommutative
comonoid, with comultiplication ei 7→ ei ⊗ ei and counit ei 7→ 1.

4 / 25



Example comonoids

I In Set, the tensor product is a Cartesian product.
Every object carries a unique comonoid with comultiplication
a 7→ (a, a) and counit a 7→ •, which is cocommutative.

I In Rel, any group G forms a comonoid with
comultiplication g ∼ (h, h−1g) and counit 1 ∼ •.
Counitality: LHS is g ∼ h where h−1g = 1, RHS is g ∼ 1−1g.
The comonoid is cocommutative iff the group is abelian.
Cocommutativity: LHS is g ∼ (h−1g, h), RHS is g ∼ (k, k−1g).

I In FHilb, basis {ei} for a Hilbert space gives a cocommutative
comonoid, with comultiplication ei 7→ ei ⊗ ei and counit ei 7→ 1.

4 / 25



Example comonoids

I In Set, the tensor product is a Cartesian product.
Every object carries a unique comonoid with comultiplication
a 7→ (a, a) and counit a 7→ •, which is cocommutative.

I In Rel, any group G forms a comonoid with
comultiplication g ∼ (h, h−1g) and counit 1 ∼ •.
Counitality: LHS is g ∼ h where h−1g = 1, RHS is g ∼ 1−1g.
The comonoid is cocommutative iff the group is abelian.
Cocommutativity: LHS is g ∼ (h−1g, h), RHS is g ∼ (k, k−1g).

I In FHilb, basis {ei} for a Hilbert space gives a cocommutative
comonoid, with comultiplication ei 7→ ei ⊗ ei and counit ei 7→ 1.

4 / 25



Monoids
Dually:

m

=

m m

m
=

m

m u

m
= =

u

m

commutativity associativity unitality

Triple (A,m, u) is (commutative) monoid. Examples:
I Tensor unit I, with multiplication ρI = λI and unit idI.
I A monoid in Set is just an ordinary monoid; e.g. any group.
I A monoid in Vect is an algebra: a set where we can add vectors

and multiply with scalars, and also multiply vectors bilinearly.
E.g. Cn under pointwise multiplication and unit (1,1, . . . ,1).
E.g. vector space of n-by-n matrices with matrix multiplication.
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Homomorphisms

Draw comultiplication as , counit as , multiplication as , unit as .

Choosing bases {di} and {ej} makes H and K in FHilb comonoids.

Functions {di} {ej} respect comultiplication and counit.

A comonoid homomorphism (A, , ) (B, , ) is A f B with:

f
=

f f

f
=

Dually: monoid homomorphism.

Given monoidal category, can build new category of (co)monoids
and homomorphisms.
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Example homomorphisms

I In Set, any function A f B is a comonoid homomorphism:
(f × f)(a, a) =

(
f(a), f(a)

)
, and f(a) = •.

I In Rel, any surjective homomorphism G f H of groups is a
comonoid homomorphism. Preservation of comultiplication:
LHS is g ∼ (h, h−1f(g)), RHS is g ∼ (f(g′), f(g′)−1f(g)).

I In FHilb, any function {di}
f {ej} between bases extends

linearly to a comonoid homomorphism:
d(f(di)) = f(di)⊗ f(di) and e(f(dj)) = 1 = e(dj).
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Product of monoids
Can combine two (co)monoids to single one using braiding:

If braiding is symmetry: categorical product.

Examples:
I In Set, product comonoid on A,B is unique comonoid on A× B.

I In Rel, the product comonoid of groups G and H is comonoid of
G× H with multiplication (g1, h1)(g2, h2) = (g1g2, h1h2).

I In FHilb, the product of comonoids on H and K that copy bases
{di} and {ej} is the comonoid copying basis {di ⊗ ej} of H ⊗ K.
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Dagger

Monoidal dagger category has duality between monoids and
comonoids: (A, d, e) is a comonoid if and only if (A, d†, e†) is a
monoid.

Example:
I In Rel: comultiplication g ∼ (h, h−1g) for group G turns into

multiplication (g, h) ∼ gh.
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Closure

Morphisms transform input into output.
But sometimes want to transform morphisms into morphisms.

Can handle this using names and conames. E.g.:

FHilb(H,K) = {H f K | f linear}

is vector space with pointwise operations (f + g)(x) = f(x) + g(x),
Hilbert space with trace inner product 〈f |g〉 = Tr(f † ◦ g).

To transform morphisms, encode them as vectors in function spaces.
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Matrices

One of most important features of matrices: they can be multiplied.
In other words, linear maps Cn Cn can be composed.
Using closure, can internalize this: the vector space Mn of matrices is
a monoid that lives in the same category as Cn.

More generally, if an object A in a monoidal category has a dual A∗,
then operators A f A correspond bijectively to states I pfq A∗ ⊗ A.
Composition A g◦f A of operators transfers to states I pg◦fq A∗ ⊗ A:

pgq pfq
=

pg ◦ fq

So A∗ ⊗ A canonically becomes monoid.
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Pair of pants

If A a A∗ in monoidal category, then A∗ ⊗ A is a monoid:

A

A

A A A

A

A A

Proof.

= =

=
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Matrix algebras

Example: pair of pants on Cn in FHilb is the algebra Mn of n-by-n
matrices under matrix multiplication.

Proof: Fix basis {|i〉} for A = Cn, so A∗ ⊗ A has basis {〈j| ⊗ |i〉}.

Define map A∗ ⊗ A Mn by mapping 〈j| ⊗ |i〉 to the matrix eij
with a single entry 1 on row i and column j and zeroes elsewhere.

This bijection respects multiplication:

i j k l

=

[
〈i| ⊗ |l〉 if j = k
0 if j 6= k

]
7−→

[
eil if j = k
0 if j 6= k

]
= eijekl
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Pair of pants are universal

Cayley: any group G is a subgroup of a symmetric one.

Symmetric group Sym(A): bijections A A under composition.
Embedding R : G Sym(G) is regular representation g 7→ Rg.

Rg(h) = g · h

Already works for monoids: any M is submonoid of Set(M,M).
Closure: instead of injective homomorphism M R Set(M,M),
consider relation M M∗ ×M (latter with pair of pants).

Abstract embedding of (M, , ) into M a M∗:

R =

14 / 25
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Cayley’s theorem
Any monoid (A, , ) in a monoidal category with A a A∗ has monoid
homomorphism to (A∗ ⊗ A, , ) with right inverse.

R =

Proof. R preserves units:

R = =

R preserves multiplication:

R

= = =
R R

Finally, R has a right inverse .
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Uniform deleting

Counit A e I tells us we can ‘delete’ A if we want to.
What does it mean to have deletion systematically on every object?

A monoidal category has uniform deleting if there is a natural
transformation A eA−→ I with eI = idI, such that:

A⊗ B

I ⊗ I I

eA ⊗ eB eA⊗B

λI

Uniform deleting possible if and only if I is terminal.

Proof. Uniform deleting gives a morphism A eA I for each object A.
Naturality and eI = idI then show any morphism A f I equals eA.
Conversely, if I is terminal, choose eA : A I uniquely.
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Conversely, if I is terminal, choose eA : A I uniquely.
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No-deleting theorem

A preorder is a category that has at most one morphism A B for
any pair of objects A,B.

Preorders are degenerate, with only process of each type.

Theorem: if a monoidal category with duals has uniform deleting,
then it is a preorder.

Proof. Let A f ,g−→ B be morphisms. Naturality of e gives:

A⊗ B∗ I

I I

eA⊗B∗

xfy idI

eI = idI

So xfy = eA⊗B∗ , and similarly xgy = eA⊗B∗ . Hence f = g.
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Uniform copying
Question: what does it mean to copy objects systematically?
Answer: copying must respect composition, tensor products.

A braided monoidal category has uniform copying if there is a
natural transformation A dA A⊗ A with dI = ρI, satisfying
cocommutativity and coassociativity, and:

A B

A BB A

dA dB =

A B BA

BA

dA⊗B

Naturality and dI = ρI look like this for arbitrary A f B:

A

B B

dA

f f

=

A

B B

f

dB

dI =
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Copying states

Example: Set has uniform copying maps a 7→ (a, a):
d1(•) = (•, •) = ρ1(•)
both maps A× B A× B× A× B are (a, b) 7→ (a, b, a, b)

In a braided monoidal category, a state I u A is copyable with respect
to a map A dA A⊗ A when:

u

dA
=

u u

In braided monoidal category with uniform copying, any state is
copyable.

Proof. If there is uniform copying, then, by naturality of the copying
maps, we have dA ◦ u = (u⊗ u) ◦ ρI for each state I u A.
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Duals vs copying
If a braided monoidal category with duals has uniform copying:

A∗ A A∗ A
=

A∗ A A∗ A

Proof. First, consider the following equality (∗):

A∗ A A∗ A
=

A∗ A A∗ A

dI

= dA∗⊗A = dA∗ dA

Then:

A∗ A A∗ A (∗)
= dA∗ dA =

dA∗ dA

(∗)
=

A∗ A A∗ A
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Duals vs copying

In a braided monoidal category with duals and uniform copying:

A A

A A

=
A A

A A

Proof.

A A

A A

= =
iso
=

A A

A A
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No-cloning theorem
If a braided monoidal category with duals has uniform copying,
every endomorphism is a multiple of the identity, f = Tr(f) • id:

f =
f

Proof.

f =

A

A

f iso
=

A

A

f =
f
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Products
The following are equivalent for a symmetric monoidal category:

I tensor products are products and the tensor unit is terminal
I it has uniform copying and deleting, satisfying counitality

Proof. If cartesian, unique A eA I and dA =
(

idA
idA

)
provide uniform

copying and deleting.

For converse, need to prove A⊗ B is product of A,B.
For C f A and C g B, define(

f
g

)
= (f ⊗ g) ◦ d

pA = ρA ◦ (idA ⊗ eB) : A⊗ B A
pB = λB ◦ (eA ⊗ idB) : A⊗ B B
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Proof. Suppose C m A⊗ B satisfies pA ◦m = f and pB ◦m = g.

Then:

(
f
g

)
=

f

dC

g

=

eAeB

m

dC

m =

eAeB

dA⊗B

m

=

eAeB

dA

m

dB = m

Hence mediating morphisms, if they exist, are unique.

Finally, we show the universal morphism has the right properties:

pB ◦
(

f
g

)
=

eA

f

dC

g
=

eC

dC

g

= g

A similar result holds for g.
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Summary

I Monoids: multiplication on states
I Comonoids: ‘copying’ of states
I Closure: operators form monoids
I Cloning: no-cloning and no-deleting
I Products: characterize when tensor product is product

Next week: interaction between monoids and comonoids
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