Categories and Quantum Informatics exercise sheet 5: Monoids and comonoids

Exercise 4.1. Let (A, d, e) be a comonoid in a monoidal category. Show that a comonoid homomorphism $I \xrightarrow{a} A$ is a copyable state. Conversely, show that if a state $I \xrightarrow{a} A$ is copyable and satisfies $e \circ a = id_I$, then it is a comonoid homomorphism.

Exercise 4.2. This exercise is about *property* versus *structure*; the latter is something you have to choose, the former is something that exists uniquely (if at all).

- (a) Show that if a monoid (A, m, u) in a monoidal category has a map $I \xrightarrow{u'} A$ satisfying $m \circ (\mathrm{id}_A \otimes u') = \rho_A$ and $\lambda_A = m \circ (u' \otimes \mathrm{id}_A)$, then u' = u. Conclude that unitality is a property.
- (b) Show that in categories with binary products and a terminal object, every object has a unique comonoid structure under the monoidal structure induced by the categorical product.
- (c) If (\mathbf{C}, \otimes, I) is a symmetric monoidal category, denote by $\mathbf{cMon}(\mathbf{C})$ the category of commutative monoids in \mathbf{C} with monoid homomorphisms as morphisms. Show that the forgetful functor $\mathbf{cMon}(\mathbf{C}) \rightarrow \mathbf{C}$ is an isomorphism of categories if and only if \otimes is a coproduct and I is an initial object.

Exercise 4.3. This exercise is about the *Eckmann-Hilton argument*, concerning interacting monoid structures on a single object in a braided monoidal category. Suppose you have morphisms $A \otimes A \xrightarrow{m_1,m_2} A$ and $I \xrightarrow{u_1,u_2} A$, such that (A, m_1, u_1) and (A, m_2, u_2) are both monoids, and the following diagram commutes:

- (a) Show that $u_1 = u_2$.
- (b) Show that $m_1 = m_2$.
- (c) Show that m_1 is commutative.