Categories and Quantum Informatics exercise sheet 5:
Monoids and comonoids

Exercise 4.1. Let (A, d, e) be a comonoid in a monoidal category. Show that a comonoid homomorphism $I \otimes A$ is a copyable state. Conversely, show that if a state $I \otimes A$ is copyable and satisfies $e \circ a = id_I$, then it is a comonoid homomorphism.

Exercise 4.2. This exercise is about property versus structure; the latter is something you have to choose, the former is something that exists uniquely (if at all).

(a) Show that if a monoid (A, m, u) in a monoidal category has a map $I \rightarrow A$ satisfying $m \circ (id_A \otimes u') = \rho_A$ and $\lambda_A = m \circ (u' \otimes id_A)$, then $u' = u$. Conclude that unitality is a property.

(b) Show that in categories with binary products and a terminal object, every object has a unique comonoid structure under the monoidal structure induced by the categorical product.

(c) If (C, \otimes, I) is a symmetric monoidal category, denote by $cMon(C)$ the category of commutative monoids in C with monoid homomorphisms as morphisms. Show that the forgetful functor $cMon(C) \rightarrow C$ is an isomorphism of categories if and only if \otimes is a coproduct and I is an initial object.

Exercise 4.3. This exercise is about the Eckmann–Hilton argument, concerning interacting monoid structures on a single object in a braided monoidal category. Suppose you have morphisms $A \otimes A \rightarrow A$ and $I \rightarrow A$, such that (A, m_1, u_1) and (A, m_2, u_2) are both monoids, and the following diagram commutes:

\[
\begin{array}{ccc}
 m_1 & \rightarrow & m_2 \\
 \downarrow & & \downarrow \\
 m_2 & & m_2
\end{array}
\]

= \[
\begin{array}{ccc}
 m_1 & \rightarrow & m_1 \\
 \downarrow & & \downarrow \\
 m_1 & & m_1
\end{array}
\]

(a) Show that $u_1 = u_2$.

(b) Show that $m_1 = m_2$.

(c) Show that m_1 is commutative.