Categories and Quantum Informatics exercise sheet 5:
Monoids and comonoids

Exercise 4.1. The comonoid structure on I is given by (I, A;l,idI). The definition of copyability and the
first part of the definition of comonoid homomorphism are both described by the same equation in this case,
namely:

doa=(a®a)o;?

This means that a state a is copyable iff a satisfies the first equation in the definition of comonoid
homomorphism. Note that in general, a copyable state a does not satisfy the other condition, namely
deletion. A counter example is taking a zero state.

Exercise 4.2.  (a) The graphical proof for this part is very simple (simply plug in both v and «’ into m),
but we present a symbolic one for comparisson.
Observe that the following equation holds because of naturality of p:

pao(u®idr) =wuopy

Since A\; = py, we have:
paoc(u®idr) =uopr =uoAs

Using the same argument, but for A and v’ we get:

)\Ao(id1®u')=u'o)\1:u’op1

We have:
mo (ida @u') = pa
= mo(ida®u)o(u®idr) = pao (u®idr) (compose on right)
= mo(idg®u')o(u®id;) =uols (above equation)
= mo(u®u)=uols (interchange law)
= mo(u®ida)o (idf@u") =uol; (interchange law)
= Mo (id;®@u')=uo)s (monoid axiom)
= uwolr=wuo\s (above equation)
= u =u (A is invertible)

Note, that we have used only one of the equations for u'.

(b) We will write the product of f: X — A and g : X — B as (f,g) : X — A x B and the associated
projections will be written as 7 ? and 75> 2.
Recall, that



(fig)oh = (foh,goh)

First, we need to express the monoidal structure induced by the product. It is given in the following
way:
For objects, A and B

AR B:=AxB

For morphisms f: A— B and g: C— D
f@g:=(fom™ gom™C)

The monoidal unit [ is the terminal object 1 of the category. Then,

. _1xA
A =T,
Ax1
PA =T
A><B (A><B)><C AXB (AxB)xC _(AxB)xC
aa,B,c = (T ™ (75 0 ) )

Next, we need to show that every object in the category has a comonoid structure. Let A be an
arbitrary object. We can assign it a comonoid structure (A, d, e) by defining:

d = (ida,ids) : A— Ax A

e _1A A—1

where 14 is the unique morphism going from A to the terminal object 1. We have to verify that the
axioms for a comonoid are satisfied.

pao(ida®e)od=m{"" o (idsom 4 1407 *4) o (ida,ida)
—szowAX o (ida,ida)
ZZdA

as required. Next,

Aao(e®ida)od=mi*"o (140w idy om0 (ida,ida)
szowAXA o (ida,ida)

= ZdA
as required. Next, we show coassociativity:

aaa40(dRidg)od=caa40 <do7ri4><A ida 07TA><A> od
= QA,AA0° <dO7T14><A od,ﬂQAXA od)

QA A,A © <doidA,idA>

AXA AXA)XA7<7T;XAO7T(AXA)XA WéAXA)XA>>O<d,Z.dA>

A (A><A)><A <d ZdA> < AxA O7T§A><A) A,T(éAXA)XA> o <d, ZdA>>

id 4, < AXA d, idA>>

(my

< AXx

= (Ao d, (4o ﬂ%AXA)XA o {d, idA>,7T§AXA)XA o{d,ida)))
=

<ZdA, <’LdA,ZdA>>



Also,

Therefore, coassociativity holds and (A, d, e) is indeed a comonoid.

Next, we have to show that the construction is unique. That is, for any other comonoid (A, d’, ') that
d=d and e=¢.

Since 1 is a terminal object, then it must be the case that e = ¢ : A — 1. From counitlaity of
(A,d', e’ = e) we have:

idga = pao(idg®e)od

_ ﬂ_flxl ° <idA Oﬂ_leAle OW?XA> Odl
=idyom{*Aod
= 7I'i4><A od

and also,

idgy = Mg 0 (6®idA)Od/
= W%XA o(la owaA,idA ow;XA> od

=idy o 7T§4XA od

_ 7_(_§4><A Od/

Because of these two equalities and from the universal property of categorical products, it then follows
that d’ must be the unique morphism

d = (idy,ida) = d

which completes the proof.

(¢) RHS = LHS: Since ® is a coproduct, we can simply use the dualized statement of (b) to conclude
that every object A has a unique monoid structure (A, ma,u4).
First, note that the tensor product on two morphisms f: A— B and g : C — D is given by:

f®g:= [ifeaDofJQB@Dog] A C—B@D
and braiding is given by:
oap:=[ig% %% Ao B—>Bao A
The monoidal structure on A is defined by:

ma = [idA,idA] TADA—A



ug:i=14:1— A

where 14 is unique morphism from the initial object to A. Also, recall that:

[f,gloiy®? = f
[f?g] OiQBEBD =49
holf,gl=[ho f hoyg]

We show that every monoid (A, ma,u4) is commutative:

maooaa=ida,ida]o [iEP4 B4 (definition)
= [lida,id ] 0 iZ®4, [id,id 4] 0 iP®4] (coproduct)
= [ida,id 4] (coproduct)
=my (definition)

We can definie an isomorphism F': C — cMon(C) in the following way:

F(A):=(A,ma,ua)
F(f) =1
It’s clear that this functor is an isomorphism, if it is well-defined. We have already shown it is
well-defined on objects. We just have to show that every morphism in C is a monoid homomorphism.
Let f: A— B be an arbitrary morphism. Now, consider the monoidal structures of the two objects
(A,;ma,ua), (B,mp,up). We have:
up = foua
—
1B = f (¢] 1A

which is clearly true, since I = 1 is an initial object.

foma=mpo(fef)

= folida,ida] = [idp,idg] o [iPPB o f,iB%P o f]
= [f.f] = [lidp,idp] 0 iy*" o f.[idp, idp] 0 iy *" o f]
> [f,f] =lidpo f,idp o f]

= [f.f1=1[f1]

Therefore, f is a monoid homomorphism and thus F' is an isomorphism. Showing that the functor F
is a monoidal functor is straightforward with all of the definitions we have provided.

LHS = RHS: cMon(C) is monoidally isomorphic to C therefore every object A has a unique monoid
structure which we will denote as (A, ma,ua). Consider objects A, B,C and A ® B and morphisms
fi: A—C, fo : B— C. Since the categories are isomorphic, this implies that f; and fo are monoid
homomorphisms.

First, we define morphisms if®B :A— A® B, i‘24®B : B— A® B given by:

i1 := (ida ®up) o pgl



19 := (ua ®idp) o )\]_31

Define,

[f1, f2] =mc o (fi ® fa)

We claim that ([f1, f2],41,42) is the coproduct of the morphisms f; and f,. First, we verify:

[f1, fa] 0i1 = mc o (f1 ® fo) 0 (ida @ up) o py* (definition)
=mco(fi®(f2o UB)) opyt (interchange)
=mco (fi ®uc)opy' (monoid homomorphism)
=mc o (idc @ uc) o (fi ®idr) o py* (interchange)
= pc o (f1 ®idr)o p;ll (monoid unitality for C)
= fiopaopy (naturality of p)
=h

In a similar way, we can show that

[f1, f2] 0ia = fo

Finally, we have to show that the construction is universal. That is, if there exists a morphism
h:A® B— C with hOil :fl and hoiz :f2 then h = [fl,fg].

Consider:

[f1, fa] =mc o (fi ® fa) (definition)
=mgo((hoiy) ® (hz0iz)) (assumption)
=mc o (h®h)o (i1 ® i) (interchange)
=homagp o (i1 ®iz) (h — homomorphism)
=ho(ma®mp)o(idaoop goidg)o
o(ida ®up @us®idg)o (p' @A) (def+interchange)
=ho(ma®mpg)o (idsousoupoidp)o(py' @Az (interchange)
=ho(pa®Ap)o(py' ®@A5" (unitality x 2)
=h (interchange)

We have shown that coproducts exist for any pair of objects A and B. However, we still need to show
that there is an initial object. The initial object is, of course, the tensor unit I. Consider an arbitrary
object A. Since A is a monoid, then there must be a map uy : [ — A. Moreover, if there is another
morphism x : I — A, then it must be a monoid homomorphism. Therefore,

Ug=xour=zxoid; =x

since (I, A7, idy) is the unique monoid on I.
Therefore, I is an initial object, which completes the proof.

Exercise 4.3. For the whole exercise, the graphical proof is very simple and straightforward. However, for
comparisson, we show a symbolic solution instead.



(a) The trick is to plug in the state (u2 @ u; @ u1 & ug).

my o (mg ® ma) o (us ®u; @ uy @ ug) =mg o (my @my)o (idaoooida)o (us®u; uy @ ug)

—
mio(Aao(idf ®u1)) ® (pao (ug ®idr)) =mzo (M @my)o (us @ uy ® ug @ us)
.
1o (110 M) (1 0 pr)) = ma o ((pa o (s @ idi)) @ (A o (idy  u)))
—
mi o (u1 ®ur) o (A\r ® pr)) =ma o ((uz 0 pr) ® (uz 0 Ar))
.
Aa o (idr ®@uy) o (A ® pr)) =mao (ug ®uz) o (pr ® Ar)
—
Aa o (idr @ uy) = ma o (ug ® uz)
.
Ao (idy ®uy) = Aa o (id; ® ug)
—

UL O AT = U O AT
_—
Uy = u2
(b) From now on we will write u := u; = us.
Plugging in the map (ida ® u ® u ® id4) to both sides of the equation yields the desired result.
my 0 (may ®ma) o (ida U uida) =mgo(my @my)o(idaoooida)o (idg @uuida)
=
my o (ma®@msa)o(idg @uu®idg) =mgo(m; @m)o (idg @uu®idy)
.
my o (pa ®@Aa) =mgo (pa®Aa)
=
my = Mo

(c) We will write m := my = ma.
This time, the trick is to plug in the map (u ® id4 ® id4 ® u) to both sides of the equation. We get:

mo(mem)o(u®ids ®idyg ®u) =mo(m®m)o(idgoooidy)o(u®idg @ida @ u)

.

mo(Aa®pa)=mo(m®m)o(u®ids ®ida ®u)o (idy o o oidy)
.

mo(Ag ®pa)=mo (Mg ®pa)o (idr oo oidy)
_—

mo(Ag®pa)=mocoo(Aa®pa)
.

m=m°oao



