
Categories and Quantum Informatics exercise sheet 5:

Monoids and comonoids

Exercise 4.1. The comonoid structure on I is given by (I, λ−1I , idI). The definition of copyability and the
first part of the definition of comonoid homomorphism are both described by the same equation in this case,
namely:

d ◦ a = (a⊗ a) ◦ λ−1I

This means that a state a is copyable iff a satisfies the first equation in the definition of comonoid
homomorphism. Note that in general, a copyable state a does not satisfy the other condition, namely
deletion. A counter example is taking a zero state.

Exercise 4.2. (a) The graphical proof for this part is very simple (simply plug in both u and u′ into m),
but we present a symbolic one for comparisson.
Observe that the following equation holds because of naturality of ρ:

ρA ◦ (u⊗ idI) = u ◦ ρI

Since λI = ρI , we have:
ρA ◦ (u⊗ idI) = u ◦ ρI = u ◦ λI

Using the same argument, but for λ and u′ we get:

λA ◦ (idI ⊗ u′) = u′ ◦ λI = u′ ◦ ρI

We have:

m ◦ (idA ⊗ u′) = ρA

=⇒ m ◦ (idA ⊗ u′) ◦ (u⊗ idI) = ρA ◦ (u⊗ idI) (compose on right)

=⇒ m ◦ (idA ⊗ u′) ◦ (u⊗ idI) = u ◦ λI (above equation)

=⇒ m ◦ (u⊗ u′) = u ◦ λI (interchange law)

=⇒ m ◦ (u⊗ idA) ◦ (idI ⊗ u′) = u ◦ λI (interchange law)

=⇒ λA ◦ (idI ⊗ u′) = u ◦ λI (monoid axiom)

=⇒ u′ ◦ λI = u ◦ λI (above equation)

=⇒ u′ = u (λI is invertible)

Note, that we have used only one of the equations for u′.

(b) We will write the product of f : X A and g : X B as 〈f, g〉 : X A × B and the associated
projections will be written as πA×B

1 and πA×B
2 .

Recall, that
πA×B
1 ◦ 〈f, g〉 = f

πA×B
2 ◦ 〈f, g〉 = g
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〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉

First, we need to express the monoidal structure induced by the product. It is given in the following
way:
For objects, A and B

A⊗B := A×B

For morphisms f : A B and g : C D

f ⊗ g := 〈f ◦ πA×C
1 , g ◦ πA×C

2 〉

The monoidal unit I is the terminal object 1 of the category. Then,

λA := π1×A
2

ρA := πA×1
1

αA,B,C := 〈πA×B
1 ◦ π(A×B)×C

1 , 〈πA×B
2 ◦ π(A×B)×C

1 , π
(A×B)×C
2 〉〉

Next, we need to show that every object in the category has a comonoid structure. Let A be an
arbitrary object. We can assign it a comonoid structure (A, d, e) by defining:

d := 〈idA, idA〉 : A A×A

e := 1A : A 1

where 1A is the unique morphism going from A to the terminal object 1. We have to verify that the
axioms for a comonoid are satisfied.

ρA ◦ (idA ⊗ e) ◦ d = πA×1
1 ◦ 〈idA ◦ πA×A

1 , 1A ◦ πA×A
2 〉 ◦ 〈idA, idA〉

= idA ◦ πA×A
1 ◦ 〈idA, idA〉

= idA

as required. Next,

λA ◦ (e⊗ idA) ◦ d = π1×A
2 ◦ 〈1A ◦ πA×A

1 , idA ◦ πA×A
2 〉 ◦ 〈idA, idA〉

= idA ◦ πA×A
2 ◦ 〈idA, idA〉

= idA

as required. Next, we show coassociativity:

αA,A,A ◦ (d⊗ idA) ◦ d = αA,A,A ◦ 〈d ◦ πA×A
1 , idA ◦ πA×A

2 〉 ◦ d
= αA,A,A ◦ 〈d ◦ πA×A

1 ◦ d, πA×A
2 ◦ d〉

= αA,A,A ◦ 〈d ◦ idA, idA〉

= 〈πA×A
1 ◦ π(A×A)×A

1 , 〈πA×A
2 ◦ π(A×A)×A

1 , π
(A×A)×A
2 〉〉 ◦ 〈d, idA〉

= 〈πA×A
1 ◦ π(A×A)×A

1 ◦ 〈d, idA〉, 〈πA×A
2 ◦ π(A×A)×A

1 , π
(A×A)×A
2 〉 ◦ 〈d, idA〉〉

= 〈πA×A
1 ◦ d, 〈πA×A

2 ◦ π(A×A)×A
1 ◦ 〈d, idA〉, π(A×A)×A

2 ◦ 〈d, idA〉〉〉
= 〈idA, 〈πA×A

2 ◦ d, idA〉〉
= 〈idA, 〈idA, idA〉〉
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Also,

(idA ⊗ d) ◦ d = 〈idA ◦ πA×A
1 , d ◦ πA×A

2 〉 ◦ d
= 〈πA×A

1 ◦ d, d ◦ πA×A
2 ◦ d〉

= 〈idA, d ◦ idA〉
= 〈idA, d〉
= 〈idA, 〈idA, idA〉〉

Therefore, coassociativity holds and (A, d, e) is indeed a comonoid.
Next, we have to show that the construction is unique. That is, for any other comonoid (A, d′, e′) that
d = d′ and e = e′.
Since 1 is a terminal object, then it must be the case that e = e′ : A 1. From counitlaity of
(A, d′, e′ = e) we have:

idA = ρA ◦ (idA ⊗ e) ◦ d′

= πA×1
1 ◦ 〈idA ◦ πA×A

1 , 1A ◦ πA×A
2 〉 ◦ d′

= idA ◦ πA×A
1 ◦ d′

= πA×A
1 ◦ d′

and also,

idA = λA ◦ (e⊗ idA) ◦ d′

= π1×A
2 ◦ 〈1A ◦ πA×A

1 , idA ◦ πA×A
2 〉 ◦ d′

= idA ◦ πA×A
2 ◦ d′

= πA×A
2 ◦ d′

Because of these two equalities and from the universal property of categorical products, it then follows
that d′ must be the unique morphism

d′ = 〈idA, idA〉 = d

which completes the proof.

(c) RHS ⇒ LHS: Since ⊗ is a coproduct, we can simply use the dualized statement of (b) to conclude
that every object A has a unique monoid structure (A,mA, uA).
First, note that the tensor product on two morphisms f : A B and g : C D is given by:

f ⊗ g :=
[
iB⊕D1 ◦ f, iB⊕D2 ◦ g

]
: A⊕ C B ⊕D

and braiding is given by:

σA,B := [iB⊕A2 , iB⊕A1 ] : A⊕B B ⊕A

The monoidal structure on A is defined by:

mA := [idA, idA] : A⊕A A

3



uA := 1A : I A

where 1A is unique morphism from the initial object to A. Also, recall that:

[f, g] ◦ iB⊕D1 = f

[f, g] ◦ iB⊕D2 = g

h ◦ [f, g] = [h ◦ f, h ◦ g]

We show that every monoid (A,mA, uA) is commutative:

mA ◦ σA,A = [idA, idA] ◦ [iB⊕A2 , iB⊕A1 ] (definition)

= [[idA, idA] ◦ iB⊕A2 , [idA, idA] ◦ iB⊕A1 ] (coproduct)

= [idA, idA] (coproduct)

= mA (definition)

We can definie an isomorphism F : C cMon(C) in the following way:

F (A) := (A,mA, uA)

F (f) := f

It’s clear that this functor is an isomorphism, if it is well-defined. We have already shown it is
well-defined on objects. We just have to show that every morphism in C is a monoid homomorphism.
Let f : A B be an arbitrary morphism. Now, consider the monoidal structures of the two objects
(A,mA, uA), (B,mB , uB). We have:

uB = f ◦ uA
⇐⇒

1B = f ◦ 1A

which is clearly true, since I = 1 is an initial object.

f ◦mA = mB ◦ (f ⊗ f)

⇐⇒ f ◦ [idA, idA] = [idB , idB ] ◦ [iB⊕B1 ◦ f, iB⊕D2 ◦ f ]

⇐⇒ [f, f ] = [[idB , idB ] ◦ iB⊕B1 ◦ f, [idB , idB ] ◦ iB⊕D2 ◦ f ]

⇐⇒ [f, f ] = [idB ◦ f, idB ◦ f ]

⇐⇒ [f, f ] = [f, f ]

Therefore, f is a monoid homomorphism and thus F is an isomorphism. Showing that the functor F
is a monoidal functor is straightforward with all of the definitions we have provided.
LHS⇒ RHS: cMon(C) is monoidally isomorphic to C therefore every object A has a unique monoid
structure which we will denote as (A,mA, uA). Consider objects A,B,C and A ⊗ B and morphisms
f1 : A C, f2 : B C. Since the categories are isomorphic, this implies that f1 and f2 are monoid
homomorphisms.
First, we define morphisms iA⊗B1 : A A⊗B, iA⊗B2 : B A⊗B given by:

i1 := (idA ⊗ uB) ◦ ρ−1A
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i2 := (uA ⊗ idB) ◦ λ−1B

Define,

[f1, f2] := mC ◦ (f1 ⊗ f2)

We claim that ([f1, f2], i1, i2) is the coproduct of the morphisms f1 and f2. First, we verify:

[f1, f2] ◦ i1 = mC ◦ (f1 ⊗ f2) ◦ (idA ⊗ uB) ◦ ρ−1A (definition)

= mC ◦ (f1 ⊗ (f2 ◦ uB)) ◦ ρ−1A (interchange)

= mC ◦ (f1 ⊗ uC) ◦ ρ−1A (monoid homomorphism)

= mC ◦ (idC ⊗ uC) ◦ (f1 ⊗ idI) ◦ ρ−1A (interchange)

= ρC ◦ (f1 ⊗ idI) ◦ ρ−1A (monoid unitality for C)

= f1 ◦ ρA ◦ ρ−1A (naturality of ρ)

= f1

In a similar way, we can show that

[f1, f2] ◦ i2 = f2

Finally, we have to show that the construction is universal. That is, if there exists a morphism
h : A⊗B C with h ◦ i1 = f1 and h ◦ i2 = f2 then h = [f1, f2].
Consider:

[f1, f2] = mC ◦ (f1 ⊗ f2) (definition)

= mC ◦ ((h ◦ i1)⊗ (h2 ◦ i2)) (assumption)

= mC ◦ (h⊗ h) ◦ (i1 ⊗ i2) (interchange)

= h ◦mA⊗B ◦ (i1 ⊗ i2) (h – homomorphism)

= h ◦ (mA ⊗mB) ◦ (idA ◦ σB,A ◦ idB)◦
◦ (idA ⊗ uB ⊗ uA ⊗ idB) ◦ (ρ−1A ⊗ λ

−1
B ) (def+interchange)

= h ◦ (mA ⊗mB) ◦ (idA ◦ uA ◦ uB ◦ idB) ◦ (ρ−1A ⊗ λ
−1
B ) (interchange)

= h ◦ (ρA ⊗ λB) ◦ (ρ−1A ⊗ λ
−1
B ) (unitality × 2)

= h (interchange)

We have shown that coproducts exist for any pair of objects A and B. However, we still need to show
that there is an initial object. The initial object is, of course, the tensor unit I. Consider an arbitrary
object A. Since A is a monoid, then there must be a map uA : I A. Moreover, if there is another
morphism x : I A, then it must be a monoid homomorphism. Therefore,

uA = x ◦ uI = x ◦ idI = x

since (I, λI , idI) is the unique monoid on I.
Therefore, I is an initial object, which completes the proof.

Exercise 4.3. For the whole exercise, the graphical proof is very simple and straightforward. However, for
comparisson, we show a symbolic solution instead.
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(a) The trick is to plug in the state (u2 ⊗ u1 ⊗ u1 ⊗ u2).

m1 ◦ (m2 ⊗m2) ◦ (u2 ⊗ u1 ⊗ u1 ⊗ u2) = m2 ◦ (m1 ⊗m1) ◦ (idA ◦ σ ◦ idA) ◦ (u2 ⊗ u1 ⊗ u1 ⊗ u2)

=⇒
m1 ◦ (λA ◦ (idI ⊗ u1))⊗ (ρA ◦ (u1 ⊗ idI)) = m2 ◦ (m1 ⊗m1) ◦ (u2 ⊗ u1 ⊗ u1 ⊗ u2)

=⇒
m1 ◦ ((u1 ◦ λI)⊗ (u1 ◦ ρI)) = m2 ◦ ((ρA ◦ (u2 ⊗ idI))⊗ (λA ◦ (idI ⊗ u2)))

=⇒
m1 ◦ (u1 ⊗ u1) ◦ (λI ⊗ ρI)) = m2 ◦ ((u2 ◦ ρI)⊗ (u2 ◦ λI))

=⇒
λA ◦ (idI ⊗ u1) ◦ (λI ⊗ ρI)) = m2 ◦ (u2 ⊗ u2) ◦ (ρI ⊗ λI)

=⇒
λA ◦ (idI ⊗ u1) = m2 ◦ (u2 ⊗ u2)

=⇒
λA ◦ (idI ⊗ u1) = λA ◦ (idI ⊗ u2)

=⇒
u1 ◦ λI = u2 ◦ λI

=⇒
u1 = u2

(b) From now on we will write u := u1 = u2.
Plugging in the map (idA ⊗ u⊗ u⊗ idA) to both sides of the equation yields the desired result.

m1 ◦ (m2 ⊗m2) ◦ (idA ⊗ u⊗ u⊗ idA) = m2 ◦ (m1 ⊗m1) ◦ (idA ◦ σ ◦ idA) ◦ (idA ⊗ u⊗ u⊗ idA)

=⇒
m1 ◦ (m2 ⊗m2) ◦ (idA ⊗ u⊗ u⊗ idA) = m2 ◦ (m1 ⊗m1) ◦ (idA ⊗ u⊗ u⊗ idA)

=⇒
m1 ◦ (ρA ⊗ λA) = m2 ◦ (ρA ⊗ λA)

=⇒
m1 = m2

(c) We will write m := m1 = m2.
This time, the trick is to plug in the map (u⊗ idA ⊗ idA ⊗ u) to both sides of the equation. We get:

m ◦ (m⊗m) ◦ (u⊗ idA ⊗ idA ⊗ u) = m ◦ (m⊗m) ◦ (idA ◦ σ ◦ idA) ◦ (u⊗ idA ⊗ idA ⊗ u)

=⇒
m ◦ (λA ⊗ ρA) = m ◦ (m⊗m) ◦ (u⊗ idA ⊗ idA ⊗ u) ◦ (idI ◦ σ ◦ idI)

=⇒
m ◦ (λA ⊗ ρA) = m ◦ (λA ⊗ ρA) ◦ (idI ◦ σ ◦ idI)

=⇒
m ◦ (λA ⊗ ρA) = m ◦ σ ◦ (λA ⊗ ρA)

=⇒
m = m ◦ σ
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