
Categories and Quantum Informatics:

Adjoint functors

Chris Heunen

Spring 2017

In this section we consider adjoint functors. Adjoint functors stand to functors between categories as
dual objects stand to objects in monoidal categories. But adjoint functors are more general, and don’t need
any tensor product. As we will see, adjoint functors arise everywhere. They are very effective means of
translating structure between categories. They provide an essential tool in your kit of spotting patterns
when working with mathematical objects you are not familiar with (in terms of objects that are easier to
handle). Whenever you see a functor, one of the first questions that should arise in your mind is whether it
has an adjoint, because the answer nearly always brings important insight into your functor.

3.4 Adjoint functors

We will see define adjoint functors in two ways. The first definition is often easier to work with, and the
second relates to dual objects more clearly. We start with the first, and later prove that it is equivalent to
the second.

Definition 3.1 (Adjunction). Let C F D and D G C be functors. An adjunction between F and G is a
natural bijection

D(F (A), B) ' C(A,G(B)) (3.38)

for objects A in C and B in D. We say F is left adjoint to G, and G is right adjoint to F , and write F a G.

Think of categories as countries for a minute, objects as citizens, and morphisms as people talking to each
other in the country’s language. We may then intuitively regard functors as translations from one language
to another that preserve meaning. In this perspective, F and G are adjoint when it doesn’t matter if person
A travels to their friend B across the border and speaks in B’s language, or whether they meet in A’s home
country and speak the local language there.

Examples of adjoint functors are numerous. We will now see a long list of them.

Example 3.2 (Free vector space). Write U : FVect Set for the functor that takes a vector space to its
underlying set, forgetting that it had operations like addition, and that takes a linear map to its underlying
function, forgetting that was linear. Write F : Set FVect for the functor that takes a set B to the vector
space of all formal linear combinations of elements of B:

F (B) = {ϕ : B C | ϕ(b) 6= 0 for only finitely many b ∈ B}.

Addition in F (B) is given by (ϕ + ψ)(b) = ϕ(b) + ψ(b), scalar multiplication by (z · ϕ(b)) = z · ϕ(b), and
the zero vector is b 7→ 0. In other words, F (B) is a vector space with basis B. Think about ϕ ∈ F (B) as a
‘formal’ linear combination

∑
b∈B ϕ(b) · b. For example,

F ({1, . . . , n}) ' Cn.

On functions f : B C, the functor acts as F (f) : F (B) F (C) by ϕ 7→ ϕ ◦ f .

1

We will show that F a U . To do this, we have to establish a one-to-one correspondence:

linear functions g : F (B) V

functions f : B U(V)

Given f , define gf by ϕ 7→
∑

b∈B ϕ(b) · f(b). Thus f 7→ fg evaluates a formal linear combination into an
actual linear combination. Conversely, given g, define fg by sending b ∈ B to g(δb), where δb ∈ F (B) is
the characteristic function c 7→ δb,c. Then fgf = f and gfg = g, so these two constructions are each other’s
inverse. Finally, these assignments are natural.

Example 3.3 (Free monoid). Write Monoid for the category of monoids and homomorphisms, and
U : Monoid Set for the functor that takes a monoid to its underlying set and a homomorphism to
its underlying vector space. Write F : Set Monoid for the functor that takes a set A to the set of all finite
words made up of zero or more letters from A; this forms a monoid under concatenation of words, with the
empty word ∅ being the identity. For example,

F ({•}) ' N, F ({0, 1}) = {∅, 0, 1, 00, 01, 10, 11, 000, 001, . . .}.

On functions f : A B, the functor acts as F (f) : F (A) F (B) by applying f to each letter of the word
individually.

We will show that F a U . To do this, we have to establish a one-to-one correspondence:

monoid homomorphisms g : F (A) M

functions f : A U(M)

Given f , define gf by sending a word a1 · · · an to f(a1) ·f(a2) · · · f(an), and the empty word to 1. Conversely,
given g, define fg by applying g to the one-letter word a ∈ A. Then fgf = f and gfg = g, so these two
constructions are each other’s inverse. Finally, these assignments are natural.

Example 3.4 (Free category). Write Graph for the category of directed graphs, whose morphisms are
functions between vertex sets and between edge sets such that source and target of edges are preserved.
Write Cat for the category of categories and functors, and U : Cat Graph for the functor that sends a
category to its underlying directed graph. Write F : Graph Cat for the functor that takes a graph with
vertex set V and edges E ⊆ V 2 to the following category: objects are vertices v ∈ V ; morphisms as paths
v

e1 · · · en w of edges ei ∈ E; composition is concatenation of paths; and the identity on v is the path v v
of length 0. On a graph morphism f : (V,E) (V ′, E′), the functor F acts as F (f) : F (V,E) F (V ′, E′)
by sending objects v of F (V,E) to f(v), and sending a morphism v

e1 · · · en w of F (V,E) to the morphism
f(v)

f(en) · · · f(e1)
f(w).

We will show that F a U . To do this, we have to establish a one-to-one correspondence:

functors G : F (V,E) C

graph morphisms f : (V,E) U(C)

Given f , define Gf as follows: send an object v to f(v); and send a morphism v
e1 · · · en w to the composition

f(en) ◦ · · · ◦ f(e1). Conversely, given G, define fG as follows: send a vertex v to G(v); and send an edge e
to G(e). Then fGf

= f and GfG = G, so these two constructions are each other’s inverse. Finally, these
assignments are natural.

Remark 3.5 (Free algebraic structures). The above three examples are part of a large family of constructions
of free structures of various kinds. Let C be some category of sets with some extra structure, and structure-
preserving functions. Then there is always a forgetful functor U : C Set. If that functor has a left adjoint
F : Set C, it is called the free functor. In many algebraic settings, this is important, because every object
is a quotient of a free one.

2

For example, we could alter Example 3.3 to give free groups. Instead of taking words whose letters are
elements of the given set A, take words whose letters are either a ∈ A or a formal symbol a−1 for a ∈ A, and
identify consecutive letters aa−1 and a−1a with the empty word. Any group G can be given by generators
A ⊆ G and relations, so any group is a quotient of the free group A.

Similarly, the free abelian group on a set A consists of words as in the free group, but now we additionally
identify words if a permutation of their letters turns one into the other. In other words, the free abelian
group consists of functions ϕ : A Z that are nonzero on only finitely many elements of A, almost as in
Example 3.2.

However, in general this only works in for algebraic structures. There is no such thing as a free field on a
set, because division is only defined for nonzero elements. Similarly, the forgetful functor Hilb Set does
not have a left adjoint.

Above we concentrated mostly on left adjoints. In general, these make an object of their domain into an
object of their codomain by adding the least amount of structure necessary to do so. We will next focus on
right adjoints, that take away the least amount of structure. But first we consider some mixed cases.

Example 3.6 (Adjoint functors versus adjoint matrices). Let H be finite-dimensional Hilbert spaces. Write
Sub(H) for the set of subspaces, which is partially ordered by inclusion. The inner product provides the
additional structure of orthocomplementation: if U ⊆ H is a subspace, then so is

U⊥ = {v ∈ H | ∀u ∈ U : 〈u|v〉 = 0}.

Moreover, if U ≤ V in Sub(H), then V ⊥ ≤ U⊥. If f : H K is a linear function, then there is a monotone
function Sub(f) : Sub(H) Sub(K)op given by U 7→ f(U)⊥.

Now Sub(f) a Sub(f†). That is, adjoint morphisms in FHilb induce adjoint functors. To show this, let
U ∈ Sub(H) and V ∈ Sub(K), and observe

U Sub(f†)(V) in Sub(H) ⇐⇒ U ⊆ f†(V)⊥

⇐⇒ ∀u ∈ U, v ∈ V : 〈u|f†(v)〉 = 0

⇐⇒ ∀u ∈ U, v ∈ V : 〈f(u)|v〉 = 0

⇐⇒ V ⊆ Sub(f)(U)

⇐⇒ Sub(f)(U) V in Sub(K)op.

Conversely, one can show that if Sub(f) and Sub(g) are adjoint functors then if zf = g† for a scalar z ∈ C.

Example 3.7 (Quantifiers). Let A and B be sets, and write p : A × B A for the projection (a, b) 7→ a.
Write P(A) for the powerset of A, partially ordered by inclusion, regarded as a category. Define a functor
p∗ : P(A) P(A × B) by sending V ⊆ B to p−1(V) = {(a, b) ∈ A × B | a ∈ V }. This functor has a left
adjoint

∃ : P(A×B) P(A)

U 7→ {a ∈ A | ∃b ∈ B : (a, b) ∈ U}

because for U ⊆ A×B and V ⊆ A,

∃(U) ⊆ V ⇐⇒ ∀a ∈ A
(
∃b ∈ B((a, b) ∈ U)⇒ a ∈ V

)
⇐⇒ ∀(a, b) ∈ U : a ∈ V ⇐⇒ U ⊆ p∗(V).

The functor p∗ also has a right adjoint

∀ : P(A×B) P(A)

U 7→ {a ∈ A | ∀b ∈ B : (a, b) ∈ U}

for similar reasons.

3

Example 3.8 (Terminal object). Let C be any category. Write 1 for the category with one morphism (the
identity object on one object). There is a unique functor C 1. In the other direction, a functor 1 C is
just a choice of object of C. Right adjoint functors to C 1 are precisely terminal objects in C.

Lemma 3.9 (Adjoint functors compose). If C F D F ′
E and E G′

D G C are functors, and F a G and
F ′ a G′, then F ′ ◦ F a G′ ◦G′.

Proof. Write αC,D for the natural bijection D(F (C), D) C(C,G(D)), and βD,E for the natural bijection
E(F ′(D), E) D(D,G′(E)). Then αC,G′(E) ◦ βF (C),E is a natural bijection E(F ′ ◦ F (C), E) C(C,G ◦
G′(E)).

Definition 3.10 (Adjunctions via units). Let C F D and D G C be functors. An adjunction F a G
consists of natural transformations

ηC : C G(F (C)) εD : F (G(D)) D

that make the following diagrams commute:

F (C) F (G(F (C)))

F (C)

F (ηC)

εF (C)
idF (C)

G(D) G(F (G(D)))

G(D)

ηG(D)

G(εD)
idG(D)

(3.39)

We call η the unit of the adjunction, and ε the counit. Compare this to the snake equations (3.5).

Proposition 3.11. Functors C F D and D G C are adjoint according to Definition 3.1 if and only if they
are adjoint according to Definition 3.10.

Proof. First let αC,D : D(F (C), D) C(C,G(D)) be a natural bijection. Set

ηC = αC,F (C)(idF (C)), εD = α−1G(D),D(idG(D)).

The equations (3.39) follow directly from naturality of α.
Conversely, let ηC : C G(F (C)) and εD : F (G(D)) D be natural transformations satisfying (3.39).

Define αC,D(f) = G(f) ◦ ηC . Its inverse is α−1C,D(g) = εD ◦ F (f), and both are natural.

Remark 3.12. In this case of forgetful functors as in Remark 3.5, another way to say that there is a left
adjoint is by the following universal property. For every set A there is a function η : A F (A) such that,

if f : A C is any other function to an object of C, then there is a unique morphism f̂ : F (A) C with

f = f̂ ◦ η.

A F (A)

C

function η

function f morphism f̂

In general, F (A) is much larger than A. For example, the free vector space on a finite set of Example 3.2 is
uncountable; and the free monoid on a finite set of Example 3.3 is countably infinite.

Example 3.13 (Function spaces). Let B be a set, and consider the functor L : Set Set given by
L(A) = A × B. Write R : Set Set for the functor R(C) = CB , the set of functions from B to C.

4

On morphisms, R(f) sends g : B C to f ◦ g. We will show that L a R. To do this, we have to establish a
one-to-one-correspondence:

functions f : A×B C

functions g : A CB

Given g, define fg by (a, b) 7→ g(a)(b). Conversely, given f , define gf by gf (a)(b) = g(a, b). These two
assignments are natural and each other’s inverse. Passing from f to gf is called currying, and passing from
g to fg is called uncurrying. It is a staple of functional programming.

The previous example makes sense not just for sets, but in any category with products.

Example 3.14 (Heyting algebra). Let (P,≤) be a partially ordered set. Suppose that P , regarded as a
category, has products. That is, P is a meet-semilattice: every two elements p, q ∈ P have a greatest lower
bound p ∧ q. An exponential q (r in P would satisfy

p ∧ q ≤ r ⇐⇒ p ≤ q (r.

If P also had coproducts, i.e. least upper bounds, it is called a lattice. Lattices that are closed as categories
are called Heyting algebras. They play a major role in logic. Think about the elements of P as logical
propositions, and of the order p ≤ q as saying that p implies q. Then the adjunction formula above says that

deriving conclusion r from hypotheses p and q

is the same as

deriving from hypothesis p that q implies r.

Even for monoidal categories Example 3.13 is useful.

Definition 3.15 (Exponentials). A monoidal category C is closed when the functor

−⊗B : C C

A 7→ A⊗B
f 7→ f ⊗ idB

has a right adjoint RB : C C for each object B. The object RB(C) is called an exponential, and sometimes
written as B (C or CB .

This can equivalently be stated as a universal property: for all objects B and C there is an object B (C
and a natural transformation εX,Y : X ⊗ (X (Y) Y , such that any morphism f : X ⊗ Z Y factors

through εX,Y via a unique morphism f̂ : Z (X (Y).

X ⊗ (X (Y) Y

X ⊗ Z

εX,Y

idX ⊗ f̂ f

We also call εX,Y the evaluation maps.

Remark 3.16 (Recursion). Let C be a closed monoidal category. Think of objects as data types,
and morphisms as functions in a programming language. The fact that the category is closed means
that the programming language supports higher order functions: we may pass functions as arguments to
other functions. Thus we may think of the specification of a recursive function X Y as a morphism
s : (X (Y) (X (Y). A state f : I (X (Y) satisfying s ◦ f = f is called a fixed point of this
specification. It corresponds to a morphism X Y that meets the specification. So if we could somehow
pick a smallest fixed point systematically, our category would provide semantics for general recursion.

5

Lemma 3.17. Any compact category is closed.

Proof. Define B (C to be C ⊗B∗. We have to establish a natural bijection:

f : A⊗B C

g : A C ⊗B∗

Take

fg =

A

C

B

g gf =

A

C B

f

Then fgf = f and gfg = g by the snake equations, and these assignments are natural.

6

