Categories and Quantum Informatics
Week 5: Adjoint functors

Chris Heunen

vy
3
> THE UNIVERSITY of EDINBURGH

@ informatics

1/20

Overview

» Generalised dual objects: Adjoint functors __ dual objects

functors ~ objects

» Adjoint functors are everywhere: many examples
» Recursion: closed categories

Idea

Think:

category = country
object = citizen
morphism = speaking in country’s language
functor = translation

Equivalence: doesn’t matter whether I travel to you and speak your
language, or you travel to me and speak my language.

Some things get lost in translation; adjunction is next best thing.

Adjunction: first definition

Let C-£ D and D -% C be functors. An adjunction between F and G is
a natural bijection

D(F(C),D) ~ C(C,G(D))

Say F is left adjoint to G, and G is right adjoint to F, and write F - G.

/20

Free vector space

Forgetful functor FVect — Set has left adjoint F
F(B) = {¢: B—C | ¢(b) # 0 for only finitely many b € B}

That is, F(B) is free vector space with basis B, consisting of ‘formal’
linear combinations), ©(b) - b. E.g. F({1,...,n}) ~ C".

5/20

Free monoid

Forgetful functor Monoid — Set has left adjoint F
F(A) = {words made up of zero of more letters from A}
That is, F(A) is free monoid on A. E.g.

F({e})~N F({0,1}) = {0,0,1,00,01,10,11,000,001,....}

6/20

Free category

Forgetful functor Cat — Graph has left adjoint F

objects: vertices

F(V.E) = [morphisms: sequences of edges

That is, F(V,E) is the free category on (V,E). E.g.

(N N

e

Freeness

Let C be category of structured sets and structure-preserving maps.
There is forgetful functor U: C— Set. Free functor is left adjoint.

/20

Freeness

Let C be category of structured sets and structure-preserving maps.
There is forgetful functor U: C— Set. Free functor is left adjoint.

» Often, any object is a quotient of a free one

8/20

Freeness

Let C be category of structured sets and structure-preserving maps.

There is forgetful functor U: C— Set. Free functor is left adjoint.

» Often, any object is a quotient of a free one

» free group: words in letters a or a™!,

identifying aa~! and a~'a with empty word
» free abelian group: furthermore identify ab with ba
alternatively: functions A — Z with finite support

8/20

Freeness

Let C be category of structured sets and structure-preserving maps.

There is forgetful functor U: C— Set. Free functor is left adjoint.

>

>

Often, any object is a quotient of a free one
free group: words in letters a or a~ !,

identifying aa~! and a~'a with empty word

free abelian group: furthermore identify ab with ba
alternatively: functions A — Z with finite support

free fields don’t exist: not algebraic, as can’t divide by zero

free Hilbert spaces don’t exist

8/20

Adjoint functors vs adjoints

Write Sub(H) for set of subspaces of H € FHilb.
Morphism f: H— K gives monotone function

Sub(f): Sub(H) — Sub(K)°P
U f(U)*

Adjoint matrices give adjoint functors: Sub(f) - Sub(fT)
Conversely, if Sub(f) - Sub(g) then zf = g for some z € C.

9/20

Quantifiers

Write p: A x B— A for projection in Set.
Write P(A) for powerset of A, regarded as a category.
Functor

p*: P(A) — P(A x B)
U—p '(U)={(a,b) €cAxB|acV}

has left adjoint

3: P(A x B) — P(A)
V—{acA|3beB:(ab)ecV}

and right adjoint

V: P(A x B) —P(A)
Vi»{a€cA|VbeB: (ab) eV}

10/20

Terminal object

Let C be any category. Write 1 for the category with one morphism.
There is unique functor C— 1. Functor 1 — C is choice of object of C.

Right adjoint functors to C— 1 are precisely terminal objects in C.

11/20

Adjunction: second definition

Let C-£> D and D % C be functors.
An adjunction F 4 G consists of natural transformations

ne: C— G(E(C)) en: F(G(D)) — D
such that:
Fo)) perey) 2 GrGo))
M J€F<C) oy JG(@)
F(C) G(D)

Call 7 the unit of the adjunction, ¢ the counit.

12/20

Adjunction: definitions equivalent

» Let acp: D(F(C),D) — C(C,G(D)) be natural bijection. Set

nc = acr(c) (idr(c)); €p = O‘E(lp),D(idG(D))'

Triangle equations follow directly from naturality of «.

3/20

Adjunction: definitions equivalent

» Let acp: D(F(C),D) — C(C,G(D)) be natural bijection. Set

nc = acr(c) (idr(c)); €p = O‘E(lp),p(idG(D))'

Triangle equations follow directly from naturality of «.

» Letnc: C— G(F(C)) and ep: F(G(D)) — D be natural
transformations satisfying triangle equations. Define

acp(f) = G(f) onc

Its inverse is ag%(g) = ep o F(f), and both are natural.

3/20

Freeness, universally

For every set A there is a function n: A— F(A) such that,
if f: A— C is any other function to an object of C,

then there is a unique morphism f : F(A) = Cwith f = f on.

function 7
A— > F (A)

function f morphism f

C

14/20

Freeness, universally

For every set A there is a function n: A— F(A) such that,
if f: A— C is any other function to an object of C, R
then there is a unique morphism f: F(A) — C with f = f o n.

function 7
A— > F (A)

function f morphism f

C

In general, F(A) is much larger than A.

14/20

Function spaces

Let B be set, consider functor L: Set — Set given by L(A) = A x B.

Define functor R: Set— Set by R(C) = C? set of functions B — C.

Then L 4 R.

functions A — G5B ~ functions A x B—C
uncurryin,
rying

currying
uryin

Heyting algebras

Let (P, <) be partially ordered set with greatest lower bounds.

PAqQ<T < p<q-or.

16/20

Exponentials
A monoidal category C is closed when functor — ® B: C—C

A—AR®B

has a right adjoint Rg: C— C for each object B.
Object Rp(C) is called exponential, written as B — C or C5.

Equivalently: for all objects B and C there is B — C and natural
evaluation transformation exy: X ® (X — Y) — Y, such that any
f: X®Z—Y factors through exy viaf: Z — (X — Y).

X®Z

idy ®f \

X@X—-oY) ——3 Y
EXY

17/20

Recursion

Let C be closed monoidal category. Think of objects as data types,
and morphisms as functions in a programming language.
Closedness: higher order functions.

18/20

Recursion

Let C be closed monoidal category. Think of objects as data types,
and morphisms as functions in a programming language.
Closedness: higher order functions.

May think of specification of recursive function X — Y as morphism
s:(X —oY)—> X —Y)

State f: I — (X — Y) satisfying s o f = f is called fixed point of spec.
Corresponds to morphism X — Y that meets the specification.

18/20

Recursion

Let C be closed monoidal category. Think of objects as data types,
and morphisms as functions in a programming language.
Closedness: higher order functions.

May think of specification of recursive function X — Y as morphism
s:(X —oY)—> X —Y)

State f: I — (X — Y) satisfying s o f = f is called fixed point of spec.
Corresponds to morphism X — Y that meets the specification.

If could pick smallest fixed point systematically,
would have semantics for general recursion.

18/20

Compact categories are closed

Define B — C to be C ® B*. Natural bijection:

C(A,C®B*) ~C(A®B,C)
C

-4y

19/20

Summary

» Generalised dual objects: Adjoint functors __ dual objects

functors ~ objects

» Adjoint functors are everywhere: many examples
» Recursion: closed categories

