## Categories and Quantum Informatics Week 5: Adjoint functors

Chris Heunen



### Overview

- Generalised dual objects:  $\frac{\text{Adjoint functors}}{\text{functors}} = \frac{\text{dual objects}}{\text{objects}}$
- Adjoint functors are everywhere: many examples
- Recursion: closed categories

# Idea

Think:

category = country object = citizen morphism = speaking in country's language functor = translation

Equivalence: doesn't matter whether I travel to you and speak your language, or you travel to me and speak my language.

Some things get lost in translation; adjunction is next best thing.

## Adjunction: first definition

Let  $\mathbf{C} \xrightarrow{F} \mathbf{D}$  and  $\mathbf{D} \xrightarrow{G} \mathbf{C}$  be functors. An adjunction between *F* and *G* is a natural bijection

 $\mathbf{D}(F(C),D)\simeq\mathbf{C}(C,G(D))$ 

Say *F* is left adjoint to *G*, and *G* is right adjoint to *F*, and write  $F \dashv G$ .

Forgetful functor **FVect**  $\rightarrow$  **Set** has left adjoint *F* 

 $F(B) = \{ \varphi \colon B \to \mathbb{C} \mid \varphi(b) \neq 0 \text{ for only finitely many } b \in B \}$ 

That is, F(B) is free vector space with basis B, consisting of 'formal' linear combinations  $\sum_{b \in B} \varphi(b) \cdot b$ . E.g.  $F(\{1, \ldots, n\}) \simeq \mathbb{C}^n$ .

#### Forgetful functor **Monoid** $\rightarrow$ **Set** has left adjoint *F*

 $F(A) = \{$ words made up of zero of more letters from  $A\}$ 

That is, F(A) is free monoid on A. E.g.

 $F(\{\bullet\}) \simeq \mathbb{N}$   $F(\{0,1\}) = \{\emptyset, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}$ 

#### Free category

Forgetful functor **Cat**  $\rightarrow$  **Graph** has left adjoint *F* 

$$F(V,E) = \begin{bmatrix} \text{objects: vertices} \\ \text{morphisms: sequences of edges} \end{bmatrix}$$

That is, F(V, E) is the free category on (V, E). E.g.

$$F\left(\begin{array}{c} \swarrow & \bullet \\ \bullet & \checkmark & \bullet \end{array}\right) = \left(\begin{array}{c} \bigcap & \bullet \\ \bullet & \checkmark & \bullet \\ \Box & \bullet & \bullet & \bullet \end{array}\right)$$

Let **C** be category of structured sets and structure-preserving maps. There is forgetful functor  $U: \mathbf{C} \rightarrow \mathbf{Set}$ . Free functor is left adjoint.

Let **C** be category of structured sets and structure-preserving maps. There is forgetful functor  $U: \mathbf{C} \rightarrow \mathbf{Set}$ . Free functor is left adjoint.

Often, any object is a quotient of a free one

Let **C** be category of structured sets and structure-preserving maps. There is forgetful functor  $U: \mathbf{C} \rightarrow \mathbf{Set}$ . Free functor is left adjoint.

- Often, any object is a quotient of a free one
- ▶ free group: words in letters a or a<sup>-1</sup>, identifying aa<sup>-1</sup> and a<sup>-1</sup>a with empty word
- ► free abelian group: furthermore identify *ab* with *ba* alternatively: functions  $A \rightarrow \mathbb{Z}$  with finite support

Let **C** be category of structured sets and structure-preserving maps. There is forgetful functor  $U: \mathbf{C} \rightarrow \mathbf{Set}$ . Free functor is left adjoint.

- Often, any object is a quotient of a free one
- ▶ free group: words in letters a or a<sup>-1</sup>, identifying aa<sup>-1</sup> and a<sup>-1</sup>a with empty word
- ► free abelian group: furthermore identify *ab* with *ba* alternatively: functions  $A \rightarrow \mathbb{Z}$  with finite support
- free fields don't exist: not algebraic, as can't divide by zero
- free Hilbert spaces don't exist

# Adjoint functors vs adjoints

Write Sub(*H*) for set of subspaces of  $H \in$  FHilb. Morphism  $f: H \rightarrow K$  gives monotone function

$$\operatorname{Sub}(f) \colon \operatorname{Sub}(H) \to \operatorname{Sub}(K)^{\operatorname{op}}$$
  
 $U \mapsto f(U)^{\perp}$ 

Adjoint matrices give adjoint functors:  $\operatorname{Sub}(f) \dashv \operatorname{Sub}(f^{\dagger})$ Conversely, if  $\operatorname{Sub}(f) \dashv \operatorname{Sub}(g)$  then  $zf = g^{\dagger}$  for some  $z \in \mathbb{C}$ .

## Quantifiers

Write  $p: A \times B \rightarrow A$  for projection in **Set**. Write  $\mathcal{P}(A)$  for powerset of *A*, regarded as a category. Functor

$$p^* \colon \mathcal{P}(A) \to \mathcal{P}(A \times B)$$
$$U \mapsto p^{-1}(U) = \{(a, b) \in A \times B \mid a \in V\}$$

has left adjoint

$$\exists : \mathcal{P}(A \times B) \to \mathcal{P}(A)$$
$$V \mapsto \{a \in A \mid \exists b \in B \colon (a,b) \in V\}$$

and right adjoint

$$orall : \mathcal{P}(A \times B) \to \mathcal{P}(A)$$
  
 $V \mapsto \{a \in A \mid \forall b \in B \colon (a,b) \in V\}$ 

Let C be any category. Write 1 for the category with one morphism. There is unique functor  $C \to 1$ . Functor  $1 \to C$  is choice of object of C.

Right adjoint functors to  $C \rightarrow 1$  are precisely terminal objects in C.

## Adjunction: second definition

Let  $\mathbf{C} \xrightarrow{F} \mathbf{D}$  and  $\mathbf{D} \xrightarrow{G} \mathbf{C}$  be functors. An adjunction  $F \dashv G$  consists of natural transformations

$$\eta_C \colon C \to G(F(C)) \qquad \qquad \varepsilon_D \colon F(G(D)) \to D$$

such that:



Call  $\eta$  the unit of the adjunction,  $\varepsilon$  the counit.

# Adjunction: definitions equivalent

► Let  $\alpha_{C,D}$ :  $\mathbf{D}(F(C), D) \to \mathbf{C}(C, G(D))$  be natural bijection. Set  $\eta_C = \alpha_{C,F(C)}(\mathrm{id}_{F(C)}), \qquad \varepsilon_D = \alpha_{G(D),D}^{-1}(\mathrm{id}_{G(D)}).$ 

Triangle equations follow directly from naturality of  $\alpha$ .

# Adjunction: definitions equivalent

► Let 
$$\alpha_{C,D}$$
:  $\mathbf{D}(F(C), D) \to \mathbf{C}(C, G(D))$  be natural bijection. Set  
 $\eta_C = \alpha_{C,F(C)}(\mathrm{id}_{F(C)}), \qquad \varepsilon_D = \alpha_{G(D),D}^{-1}(\mathrm{id}_{G(D)}).$ 

Triangle equations follow directly from naturality of  $\alpha$ .

▶ Let  $\eta_C$ :  $C \to G(F(C))$  and  $\varepsilon_D$ :  $F(G(D)) \to D$  be natural transformations satisfying triangle equations. Define

$$\alpha_{C,D}(f) = G(f) \circ \eta_C$$

Its inverse is  $\alpha_{C,D}^{-1}(g) = \varepsilon_D \circ F(f)$ , and both are natural.

### Freeness, universally

For every set *A* there is a function  $\eta: A \to F(A)$  such that, if  $f: A \to C$  is any other function to an object of **C**, then there is a unique morphism  $\hat{f}: F(A) \to C$  with  $f = \hat{f} \circ \eta$ .



### Freeness, universally

For every set *A* there is a function  $\eta: A \to F(A)$  such that, if  $f: A \to C$  is any other function to an object of **C**, then there is a unique morphism  $\hat{f}: F(A) \to C$  with  $f = \hat{f} \circ \eta$ .



In general, F(A) is much larger than A.

### Function spaces

Let *B* be set, consider functor *L*: **Set**  $\rightarrow$  **Set** given by  $L(A) = A \times B$ . Define functor *R*: **Set**  $\rightarrow$  **Set** by  $R(C) = C^B$  set of functions  $B \rightarrow C$ .

Then  $L \dashv R$ .



## Heyting algebras

#### Let $(P, \leq)$ be partially ordered set with greatest lower bounds.

$$p \wedge q \leq r \quad \iff \quad p \leq q \multimap r.$$

### Exponentials

A monoidal category **C** is closed when functor  $- \otimes B \colon \mathbf{C} \to \mathbf{C}$ 

 $A \mapsto A \otimes B$  $f \mapsto f \otimes \mathrm{id}_B$ 

has a right adjoint  $R_B : \mathbb{C} \to \mathbb{C}$  for each object B. Object  $R_B(C)$  is called exponential, written as  $B \multimap C$  or  $C^B$ .

Equivalently: for all objects *B* and *C* there is  $B \multimap C$  and natural evaluation transformation  $\varepsilon_{X,Y} \colon X \otimes (X \multimap Y) \to Y$ , such that any  $f \colon X \otimes Z \to Y$  factors through  $\varepsilon_{X,Y}$  via  $\hat{f} \colon Z \to (X \multimap Y)$ .



### Recursion

Let **C** be closed monoidal category. Think of objects as data types, and morphisms as functions in a programming language. Closedness: higher order functions.

### Recursion

Let **C** be closed monoidal category. Think of objects as data types, and morphisms as functions in a programming language. Closedness: higher order functions.

May think of specification of recursive function  $X \rightarrow Y$  as morphism

$$s: (X \multimap Y) \to (X \multimap Y)$$

State  $f: I \to (X \multimap Y)$  satisfying  $s \circ f = f$  is called fixed point of spec. Corresponds to morphism  $X \to Y$  that meets the specification.

### Recursion

Let **C** be closed monoidal category. Think of objects as data types, and morphisms as functions in a programming language. Closedness: higher order functions.

May think of specification of recursive function  $X \rightarrow Y$  as morphism

$$s: (X \multimap Y) \to (X \multimap Y)$$

State  $f: I \to (X \multimap Y)$  satisfying  $s \circ f = f$  is called fixed point of spec. Corresponds to morphism  $X \to Y$  that meets the specification.

If could pick smallest fixed point systematically, would have semantics for general recursion.

### Compact categories are closed

Define  $B \multimap C$  to be  $C \otimes B^*$ . Natural bijection:





### Summary

- Generalised dual objects:  $\frac{\text{Adjoint functors}}{\text{functors}} = \frac{\text{dual objects}}{\text{objects}}$
- Adjoint functors are everywhere: many examples
- Recursion: closed categories