
Categories and Quantum Informatics exercise sheet 4:

Dual objects

Exercise 3.1. (a) Evaluating the snake equation on each ek gives

(idV ⊗ ε) ◦ (η ⊗ idV )(ek) = (idV ⊗ ε)(
∑
i

ei ⊗ ei ⊗ ek)

=
∑
i

ei ⊗ ε(ei ⊗ ek)

= ek,

so indeed (idV ⊗ ε) ◦ (η ⊗ idV ) = idV ; the other snake equation is verified similarly.

(b) Let (fi,j) be the matrix of f . So ei
f−→

∑
j fj,iej and ei

fT

−−→
∑

j fi,jej .
When we evaluate on each ek we get

f∗(ek) = (idV ⊗ ε) ◦ (idV ⊗ f ⊗ idV ) ◦ (η ⊗ idV )(ek)

= (idV ⊗ ε) ◦ (idV ⊗ f ⊗ idV )(
∑
i

ei ⊗ ei ⊗ ek)

=
∑
i

(idV ⊗ ε)(ei ⊗ f(ei)⊗ ek)

=
∑
ij

ei ⊗ fijε(ej ⊗ ek)

=
∑
i

fikei

= fT(ek),

and so f∗ = fT.

(c) By Lemma 3.5 we may focus on η = η′ and forget about ε = ε′. Because e′i =
∑

j fijej , we get

η′(1) =
∑
i

e′i ⊗ e′i =
∑
i,j,k

fijfikej ⊗ ek.

This equals η(1) =
∑

i ei ⊗ ei precisely when
∑

i fijfik = δjk for all j, k. But this happens precisely
when fT ◦ f = idV , since

fT ◦ f =

f1,1 . . . fn,1
...

. . .
...

f1,n . . . fn,n


f1,1 . . . f1,n

...
. . .

...
fn,1 . . . fn,n

 =


∑

i fi,1f1,i . . .
∑

i fi,1fi,n
...

. . .
...∑

i fi,nfi,1 . . .
∑

i fi,nfi,n


Because f is invertible, this means fT = f−1.

Exercise 3.2. Like any vector in R⊗L, we can write η(1) as
∑m

j=1 zjxj ⊗ yj for zj ∈ C, xj ∈ R, and yj ∈ L,
where m is some finite number. Developing each xj on the basis {ri} and using bilinearity of the tensor
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product, we see that we can also write it as
∑n

i=1 ri ⊗ li for n = dim(V ) and li ∈ L. If we could also write
it as

∑n
i=1 ri ⊗ l′i, then we would have 0 =

∑n
i=1 ri ⊗ (li − l′i). Because ri forms a basis, it would follow that

li = l′i for each i. Hence the li are unique.

(a) Use the snake equation:

l = idL(l)

= (ε⊗ idL) ◦ (idL ⊗ η)(l)

= (ε⊗ idL)(
∑
i

l ⊗ ri ⊗ li)

=
∑
i

ε(l ⊗ ri)li.

(b) Similarly, it follows from the snake equation that ri =
∑

k ε(lk ⊗ ri)rk. Suppose that li = lj . Because
{rk} are linearly independent, then ε(li ⊗ ri) = 1, and ε(lk ⊗ ri) = 0 for k 6= i. Hence ε(lj ⊗ ri) = 1,
and it follows that i = j, and so ri = rj . So f is injective.

(c) First notice that the standard form unit and counit indeed satisfy the snake equation. For the converse,
combine the previous parts with ??.

Exercise 3.3. (a) A Hilbert space is in particular a vector space. In the previous exercise, we may start
by choosing {ri} to be orthonormal.

(b) First, compute that η†(ri ⊗ lj) = 〈li |lj〉:

〈η(1)|ri ⊗ lj〉 =
∑
k

〈rk |ri〉〈lk |lj〉

= 〈li |lj〉
= 〈1|η†(ri ⊗ lj)〉.

Hence dagger duality shows that ε(li ⊗ rj) = η† ◦ σ(li ⊗ rj) = η†(rj ⊗ li) = 〈lj |li〉. But part (a) shows
that also ε(li ⊗ rj) = δij . Hence 〈li |lj〉 = δij , making {li} orthonormal.

Exercise 3.4. First notice that the standard form indeed satisfies the snake equations.
Second, if η and ε witness L a R, then for each r ∈ R there exists l ∈ L such that (•, (r, l)) ∈ η by one snake
equation. But there can be at most one such l because of the other snake equation. Thus f(r) = l defines
an isomorphism R

f
L that makes η of the standard form. By ??, also ε must be of the standard form.

Third, observe that if f 6= f ′, then η 6= η′. Hence different choices of isomorphism R ' L yield different
(co)unit maps.
Finally, notice that any isomorphism is a unitary.

Exercise 3.5. We will prove that L⊗0 is the initial object; that is: for every object X, there exists a unique
morphism L ⊗ 0 → Z. The isomorphism L ⊗ 0 ∼= 0 follows the from uniqueness of the initial object. The
isomorphism 0 a 0⊗R is done analogously.

Exercise 3.6. Let X R X. Compute:

Tr(R) = ε ◦ (R⊗ idX) ◦ σX,X ◦ η
= {((x, x), •) | x ∈ X} ◦ (R⊗ idX) ◦ {((x, y), (y, x)) | x, y ∈ X} ◦ {(•, (x, x)) | x ∈ X}
= {((x, x), •) | x ∈ X} ◦ (R⊗ idX) ◦ {(•, (x, x)) | x ∈ X}
= {((x, x), •) | x ∈ X} ◦ {(•, (y, x)) | (x, y) ∈ R}
= {(•, •) | ∃x ∈ X : xRx}.
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So Tr(R) = 1 when R has a fixed point, and Tr(R) = 0 otherwise.

Exercise 3.7. (a) Say f = g† ◦ g for A
g
B. Now use dagger duality:

TrA(f) = εA ◦ (g† ⊗ idA∗) ◦ (g ⊗ idA∗) ◦ σA∗,A ◦ ηA
= εA ◦ (g† ⊗ idA∗) ◦ σA∗,B ◦ (idA∗ ⊗ g) ◦ ηA
= η†A ◦ σA,A∗ ◦ (g† ⊗ idA∗) ◦ σA∗,B ◦ (idA∗ ⊗ g) ◦ ηA
= η†A ◦ (idA∗ ⊗ g†) ◦ (idA∗ ⊗ g) ◦ ηA.

(b) If f = g† ◦ g, then f∗ = g∗ ◦ (g†)∗ = (g∗) ◦ (g∗)†.

(c)

TrA∗(f∗) = εA∗ ◦ (f∗ ⊗ idA) ◦ σA,A∗ ◦ ηA∗

= εA∗ ◦ (idA∗ ⊗ f) ◦ σA,A∗ ◦ ηA∗

= εA ◦ σA,A∗ ◦ (idA∗ ⊗ f)⊗ σA,A∗ ◦ σA∗,A ◦ ηA
= TrA(f).

(d) This is graphically immediately clear.

(e) Suppose f = a† ◦ a and g = b† ◦ b; use the cyclic property to see Tr(g ◦ f) = Tr((b† ◦ a)† ◦ (b† ◦ a)), and
then use part (a) to see that this scalar is positive.

Exercise 3.8. Graphically:

dim(L)† =


RL



†

=

RL

=

LR

= dim(R).
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