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Many aspects of linear algebra can be described using categorical structures. This chapter examines
abstractions of the base field, and inner products.

2.1 Scalars

If we begin with the monoidal category Hilb, we can extract from it much of the structure of the complex
numbers. The monoidal unit object I is given by the complex numbers C, and so morphisms I I are linear
maps C f C. Such a map is determined by f(1), since by linearity we have f(a) = a · f(1). So, we have a
correspondence between morphisms of type I I and the complex numbers. Also, it’s easy to check that
multiplication of complex numbers corresponds to composition of their corresponding linear maps.

In general, it is often useful to think of the the morphisms of type I I in a monoidal category as
behaving like a field in linear algebra. For this reason, we give them a special name.

Definition 2.1. In a monoidal category, the scalars are the morphisms I I.

A monoid is a set A equipped with a multiplication operation, which we write as juxtaposition of elements
of A, and a chosen unit element 1 ∈ A, satisfying for all u, v, w ∈ A an associativity law u(vw) = (uv)w and
a unit law 1v = v = v1. We will study monoids closely from a categorical perspective later, but for now we
note that it is easy to show from the axioms of a category that the scalars form a monoid under composition.

Example 2.2. The monoid of scalars is very different in each of our running example categories.

• In Hilb, scalars C f C correspond to complex numbers f(1) ∈ C as discussed above. Composition of
scalars C f,g C corresponds to multiplication of complex numbers, as (g ◦f)(1) = g(f(1)) = f(1) ·g(1).
Hence the scalars in Hilb are the complex numbers under multiplication.

• In Set, scalars are functions {•} f {•}. There is only one unique such function, namely id{•} : • 7→ •,
which we will also simply write as 1. Hence the scalars in Set form the trivial one-element monoid.

• In Rel, scalars are relations {•} R {•}. There are two such relations: F = ∅ and T = {(•, •)}. Working
out the composition in Rel gives the following multiplication table:

F T
F F F
T F T

Hence we can recognize the scalars in Rel as the Boolean truth values {true, false} under conjunction.
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Commutativity

Multiplication of complex numbers is commutative: ab = ba. It turns out that this holds for scalars in any
monoidal category.

Lemma 2.3. In a monoidal category, the scalars are commutative.

Proof. Consider the following diagram, for any two scalars I
a,b

I:

I I

I ⊗ I I ⊗ I

I I

I ⊗ I I ⊗ I

a

bb

a⊗ idI

λI ρI

ρ−1Iλ−1I

idI ⊗ b
a⊗ idI

idI ⊗ b

λ−1I ρ−1I

a

λI ρI
(2.1)

The four side cells of the cube commute by naturality of λI and ρI , and the bottom cell commutes by an
application of the interchange law. Hence we have ab = ba. Note the importance of coherence here, as we
rely on the fact that ρI = λI .

Example 2.4. The scalars in our example categories are indeed commutative.

• In Hilb: multiplication of complex numbers is commutative.

• In Set: 1 ◦ 1 = 1 ◦ 1 is trivially commutative.

• In Rel: let a, b be Boolean values; then (a and b) is true precisely when (b and a) is true.

Graphical calculus

We draw scalars as circles:
a (2.2)

Commutativity of scalars then has the following graphical representation:

a

b

=

b

a

(2.3)

The diagrams are isotopic, so it follows from correctness of the graphical calculus that scalars are commutative.
Once again, a nontrivial property of monoidal categories follows straightforwardly from the graphical calculus.

Scalar multiplication

Objects in an arbitrary monoidal category do not have to be anything particularly like vector spaces, at least
at first glance. Nevertheless, many of the features of the mathematics of vector spaces can be mimicked. For
example, if a ∈ C is a scalar and f a linear map, then af is again a linear map, and we can mimic this in
general monoidal categories as follows.
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Definition 2.5 (Left scalar multiplication). In a monoidal category, for a scalar I a I and a morphism
A

f−→ B, the left scalar multiplication A
a•f

B is the following composite:

A B

I ⊗A I ⊗B

a • f

λ−1A λB

a⊗ f

(2.4)

This abstract scalar multiplication satisfies many properties we are familiar with from scalar multiplication
of vector spaces, as the following lemma explores.

Lemma 2.6 (Scalar multiplication). In a monoidal category, let I
a,b−−→ I be scalars, and A

f−→ B and B
g−→ C

be arbitrary morphisms. Then the following properties hold:

(a) idI • f = f ;

(b) a • b = a ◦ b;

(c) a • (b • f) = (a • b) • f ;

(d) (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f).

Proof. These statements all follow straightforwardly from the graphical calculus, thanks to the correctness
theorem. We also give the direct algebraic proofs. Part (a) follows directly from naturality of λ. For part
(b), diagram (2.1) shows that a ◦ b = λI ◦ (a⊗ b) ◦ λ−1I = a • b. Part (c) follows from the following diagram
that commutes by coherence:

A A B B

I ⊗A I ⊗A I ⊗B I ⊗B

I ⊗ (I ⊗A) I ⊗ (I ⊗B)

(I ⊗ I)⊗A (I ⊗ I)⊗B

idA a • (b • f) idB

λ−1A λ−1A λB λB
idI⊗A a⊗ (b • f) idI⊗B

λ−1I ⊗ idA λI ⊗ idB

idI ⊗ λ−1A idI ⊗ λB
a⊗ (b⊗ f)

α−1I,I,A
αI,I,B

(a⊗ b)⊗ f

Part (d) follows from the interchange law.

Example 2.7. Scalar multiplication looks as follows in our example categories.

• In Hilb: if a ∈ C is a scalar and H
f
K a morphism, then H

a•f
K is the morphism v 7→ af(v).

• In Set, scalar multiplication is trivial: if A
f
B is a function, and 1 is the unique scalar, then id1•f = f

is again the same function.

• In Rel: for any relation A R B, we find that true •R = R, and false •R = ∅.
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2.2 Daggers

In our definition of the category of Hilbert spaces, one aspect seemed strange: inner products are not used in
a central way. This leaves a gap in our categorical model, since inner products play a central role in quantum
theory. In this section we will see how inner products can be described abstractly using a dagger functor, a
contravariant involutive endofunctor on the category that is compatible with the monoidal structure. The
motivation is the construction of the adjoint of a linear map between Hilbert spaces, which as we will see
encodes all the information about the inner products.

Dagger categories

To describe inner products abstractly, begin by thinking about adjoints. Any bounded linear map H
f
K

between Hilbert spaces has a unique adjoint, which is another bounded linear map K
f†

H. We can encode
this action as a functor.

Definition 2.8. On Hilb, the functor taking adjoints † : Hilb Hilb is the contravariant functor that takes
objects to themselves, and morphisms to their adjoints as bounded linear maps.

For † to be a contravariant functor it must satisfy the equation (g ◦ f)† = f† ◦ g†and send identities to
identities, which is indeed the case for this operation. Furthermore it is the identity on objects, meaning that
idH
† = idH for all objects H, and it is involutive, meaning that (f†)† = f for all morphisms f .
Knowing all adjoints suffices to reconstruct the inner products on Hilbert spaces. To see how this works,

let C v,w
H be states of some Hilbert space H. The following calculation shows that the scalar C w H v†

C
is equal to the inner product 〈v |w〉:

(C w H v†
C) ≡ v†(w(1))

= 〈1|v†(w(1))〉
= 〈v |w〉 (2.5)

So the functor taking adjoints contains all the information required to reconstruct the inner products on our
Hilbert spaces. Since we used the inner products to define this functor in the first place, we see that knowing
the functor taking adjoints is equivalent to knowing the inner products.

This suggests a way to generalize the idea of ‘inner products’ to arbitrary categories, using the following
structure.

Definition 2.9 (Dagger functor, dagger category). A dagger functor on a category C is an involutive
contravariant functor † : C C that is the identity on objects. A dagger category is a category equipped
with a dagger functor.

A contravariant functor is therefore a dagger functor exactly when it has the following properties:

(g ◦ f)† = f† ◦ g† (2.6)

idH
† = idH (2.7)

(f†)† = f (2.8)

The identity-on-objects and contravariant properties mean that if A
f
B, we must have B

f†

A. The
involutive property says that (f†)† = f .

The canonical dagger functor on Hilb is the functor taking adjoints. Rel also has a canonical dagger
functor.

Definition 2.10. The dagger structure on Rel is given by relational converse: for S R T , define T R†
S

by setting tR† s if and only if sR t.
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The category Set cannot be made into a dagger category: writing |A| for the cardinality of a set A, the
set of functions Set(A,B) contains |B||A| elements, whereas Set(B,A) contains |A||B| elements. A dagger
functor would give an bijection between these sets for all A and B, which is not possible.

Another important non-example is Vect, the category of complex vector spaces and linear maps. For
an infinite-dimensional complex vector space V , the set Vect(C, V ) has a strictly smaller cardinality than
the set Vect(V,C), so no dagger functor is possible. The category FVect containing only finite-dimensional
objects can be equipped with a dagger functor: one way to do this is by assigning an inner product to every
object, and then constructing the associated adjoints. However, it does not come with a canonical dagger
functor.

A one-object dagger category is also called an involutive monoid. It consists of a set M together with an
element 1 ∈ M and functions M ×M · M and M

†
M satisfying 1m = m = m1, m(no) = (mn)o, and

(m†)† = m for all m,n, o ∈M .
In a dagger category we give special names to some basic properties of morphisms. These generalize the

terms usually reserved for bounded linear maps between Hilbert spaces.

Definition 2.11. A morphism A
f
B in a dagger category is:

• the adjoint of B
g
A when g = f†;

• self-adjoint when f = f† (and A = B);

• idempotent when f = f ◦ f (and A = B);

• a projection when it is idempotent and self-adjoint;

• unitary when both f† ◦ f = idA and f ◦ f† = idB ;

• an isometry when f† ◦ f = idA;

• a partial isometry when f† ◦ f is a projection;

• positive when f = g† ◦ g for some morphism A
g
C (and A = B).

If a category carries an important structure, it is often fruitful to require that the constructions one makes
are compatible with that structure. The dagger functor is an important structure for us, and for most of this
book we will require compatibility with it. In the search for good definitions, it is useful to see this as a sort
of guiding principle, which we summarize as the way of the dagger .

Monoidal dagger categories

We start by looking at cooperation between dagger structure and monoidal structure. For matrices H1
f1 K1

and H2
f2 K2, their tensor product f1 ⊗ f2 is given by the Kronecker product, and their adjoints f†1 , f

†
2 are

given by conjugate transpose. The order of these two operations is irrelevant: (f1 ⊗ f2)† = f†1 ⊗ f
†
2 . We

abstract this behaviour of linear maps to arbitrary monoidal categories.

Definition 2.12 (Monoidal dagger category, braided, symmetric). A monoidal dagger category is a dagger
category that is also monoidal, such that (f ⊗ g)† = f† ⊗ g† for all morphisms f and g, and such that all
components of the natural isomorphisms α, λ and ρ are unitary. A braided monoidal dagger category is a
monoidal dagger category equipped with a unitary braiding. A symmetric monoidal dagger category is a
braided monoidal dagger category for which the braiding is a symmetry.

Example 2.13. Both Hilb and Rel are symmetric monoidal dagger categories.
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• In Hilb, we have (f ⊗ g)† = f† ⊗ g† since the former is the unique map satisfying

〈(f ⊗ g)†(v1 ⊗ w1)|v2 ⊗ w2〉
= 〈v1 ⊗ w1 |(f ⊗ g)(v2 ⊗ w2)〉
= 〈v1 ⊗ w1 |f(v2)⊗ g(w2)〉
= 〈v1 |f(v2)〉〈w1 |g(w2)〉
= 〈f†(v1)|v2〉〈g†(w1)|w2〉
= 〈(f† ⊗ g†)(v1 ⊗ w1)|v2 ⊗ w2〉.

• In Rel, a simple calculation for A R B and C S D shows that

(R× S)† = {
(
(b, d), (a, c)

)
| aRb, cSd}

= R† × S†.

In each case the coherence isomorphisms λ, ρ, α, σ are also clearly unitary.

We depict taking daggers in the graphical calculus by flipping the graphical representation about a
horizontal axis as follows.

A

B

f 7→

B

A

f† (2.9)

To help differentiate between these morphisms, we will draw morphisms in a way that breaks their symmetry.
Taking daggers then has the following representation.

A

B

f 7→

B

A

f (2.10)

We no longer write the † symbol within the label, as this is now indicated by the orientation of the wedge.
For example, the graphical representation unitarity (see Definition 2.11) is:

f

f

=
f

f

= (2.11)

In particular, in a monoidal dagger category, we can use this notation for morphisms I v A representing
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a state. This gives a representation of the adjoint morphism A v†
I as follows.

v

A

7→
v

A

(2.12)

We have described how a state of an object I a A can be thought of as a preparation of A by the process
a. Dually, a costate A a†

I models the effect of eliminating A by the process a†. A dagger functor gives a
correspondence between states and effects.

Equation (2.5) demonstrated how to recover inner products from the ability to take daggers of states.
Applying this argument graphically yields the following expression for the inner product 〈v |w〉 of two states
I

v,w
H.

〈v |w〉 =

w

v

= w

v
(2.13)

The right-hand side picture is defined by this equation. Notice that it is a rotated form of Dirac’s bra-ket
notation given on the left-hand side. For this reason, we can think of the graphical calculus for monoidal
dagger categories as a generalized Dirac notation.

Probabilities

If I v A is a state and A x I an effect, recall that we interpret the scalar I v A x I as the amplitude
of measuring outcome x† immediately after preparing state v; in bra-ket notation this would be 〈x|v〉.
The probability that this history occurred is the square of its absolute value, which would be |〈x† |v〉|2 =
〈v |x†〉 · 〈x† |v〉 = 〈v |x† ◦ x(v)〉 in bra-ket notation. This makes sense for abstract scalars, as follows.

Definition 2.14 (Probability). If I v A is a state, and A x I an effect, in a monoidal dagger category, set

Prob(x, v) = v† ◦ x† ◦ x ◦ v : I I. (2.14)

Example 2.15. In our example categories, probabilities match with our interpretation.

• In Hilb, probabilities are non-negative real numbers |〈x|v〉|2.

• In Rel, the probability of observing an effect X ⊆ A after preparing the state V ⊆ A is the scalar true
when X ∩V 6= ∅, and the scalar false when X and V are disjoint. This matches with our interpretation
that the state V consists of all those elements of A that the initial state • before preparation can
possibly evolve into.
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