
Categories and Quantum Informatics:

Coherence

Chris Heunen

Spring 2018

In this section we prove the coherence theorem for monoidal categories. To do so, we first discuss strict
monoidal categories, which are easier to work with. Then we rigorously introduce the notion of monoidal
equivalence, which encodes when two monoidal categories ‘behave the same’. This puts us in a position to
prove the Strictification Theorem 1.33, which says that any monoidal category is monoidally equivalent to a
strict one. From there we prove the Coherence Theorem.

1.8 Strictness

Some types of monoidal category have no data encoded in their unit and associativity morphisms. In this
section we prove that in fact, every monoidal category can be made into a such a strict one.

Definition 1.24. A monoidal category is strict if the natural isomorphisms αA,B,C , λA and ρA are all
identities.

The category MatC can be given strict monoidal structure.

Definition 1.25. The following structure makes MatC strict monoidal:

• tensor product ⊗ : MatC × MatC MatC is given on objects by multiplication of numbers
n⊗m = nm, and on morphisms by Kronecker product of matrices;

• the monoidal unit is the natural number 1;

• associators, left unitors and right unitors are the identity matrices.

The Strictification Theorem 1.33 below will show that any monoidal category is monoidally equivalent to
a strict one. Sometimes this is not as useful as it sounds. For example, you often have some idea of what you
want the objects of your category to be, but you might have to abandon this to construct a strict version
of your category. In particular, it’s often useful for categories to be skeletal. Every monoidal category is
equivalent to a skeletal monoidal category, and skeletal categories are often particularly easy to work with.
However, not every monoidal category is monoidally equivalent to a strict, skeletal category. If you have to
choose, it often turns out that skeletality is the more useful property to have. However, sometimes you can
have both properties: for example, the monoidal category MatC of Definition 1.25 is both strict and skeletal.

1.9 Monoidal functors

Monoidal functors are functors that preserve monoidal structure; they have to satisfy some coherence
properties of their own.

1

Definition 1.26. A monoidal functor F : C C′ between monoidal categories is a functor equipped with
natural isomorphisms

(F2)A,B : F (A)⊗′ F (B) F (A⊗B) (1.26)

F0 : I ′ F (I) (1.27)

making the following diagrams commute:

(
F (A)⊗′ F (B)

)
⊗′ F (C) F (A)⊗′

(
F (B)⊗′ F (C)

)

F (A⊗B)⊗′ F (C) F (A)⊗′ F (B ⊗ C)

F
(
(A⊗B)⊗ C

)
F
(
A⊗ (B ⊗ C)

)

α′F (A),F (B),F (C)

(F2)A,B ⊗′ idF (C) idF (A) ⊗′ (F2)B,C

(F2)A⊗B,C (F2)A,B⊗C

F (αA,B,C)

(1.28)

F (A)⊗′ I ′ F (A)

F (A)⊗′ F (I) F (A⊗ I)

ρ′F (A)

idF (A) ⊗′ F0 F (ρ−1A)

(F2)A,I

I ′ ⊗′ F (A) F (A)

F (I)⊗′ F (A) F (I ⊗A)

λ′F (A)

F0 ⊗′ idF (A) F (λ−1A)

(F2)I,A

(1.29)

We can ask for monoidal functors to be compatible with a braided monoidal structure.

Definition 1.27. A braided monoidal functor is a monoidal functor F : C C′ between braided monoidal
categories such that the following diagram commutes:

F (A)⊗′ F (B) F (B)⊗′ F (A)

F (A⊗B) F (B ⊗A)

γ′F (A),F (B)

(F2)A,B (F2)B,A

F (γA,B)

(1.30)

We can also ask for a monoidal functor to be compatible with a symmetric monoidal structure, but this does
not lead to any further algebraic conditions.

Definition 1.28. A symmetric monoidal functor is a braided monoidal functor F : C C′ between
symmetric monoidal categories.

The only reason to introduce this definition is because it sounds a bit strange to talk about braided monoidal
functors between symmetric monoidal categories.

Definition 1.29. A monoidal equivalence is a monoidal functor that is an equivalence as a functor.

Example 1.30. The equivalence R : MatC FHilb is a monoidal equivalence.

2

Proof. Set R0 = idC : C C, and define (R2)m,n : Cm⊗Cn Cmn by |i〉⊗|j〉 7→ |ni+j〉 for the computational
basis. Then (R2)m,1 = ρCm and (R2)1,n = λCn , satisfying (1.29). Equation (1.28) is also satisfied by this
definition. Thus R is a monoidal functor.

We can also ask for natural transformations between monoidal functors to satisfy some equations.

Definition 1.31 (Monoidal natural transformation). Let F,G : C C′ be monoidal functors between
monoidal categories. A monoidal natural transformation is a natural transformation µ : F ⇒ G making
the following diagrams commute:

F (A)⊗′ F (B) F (A⊗B)

G(A)⊗′ G(B) G(A⊗B)

(F2)A,B

µA⊗BµA ⊗′ µB

(G2)A,B

I ′

F (I)

G(I)

F0

µI

G0

(1.31)

The further notions of braided or symmetric monoidal natural transformation do not give any further algebraic
conditions, as with the definition of symmetric monoidal functor, but for similar reasons they give useful
terminology.

Definition 1.32. A braided monoidal natural transformation is a monoidal natural transformation µ : F ⇒ G
between braided monoidal functors. A symmetric monoidal natural transformation is a monoidal natural
transformation between symmetric monoidal functors.

We can use the notion of monoidal natural transformation to give an alternative definition of monoidal
equivalence, as a pair of monoidal functors F : C D and G : D C such that both F ◦G and G ◦ F are
naturally monoidally isomorphic to the identity functors. This turns out to be equivalent to Definition 1.29.

1.10 Strictification

We now prove the Strictification Theorem by ‘going one level up’ from monoidal categories to monoidal
functors, using the ‘higher’ coherence properties of their own that monoidal functors have to satisfy.

Theorem 1.33 (Strictification). Every monoidal category is monoidally equivalent to a strict monoidal
category.

Proof. We will emulate Cayley’s theorem, which states that any group G is isomorphic to the group of all
permutations G G that commute with right multiplication, by sending g to left-multiplication with g.

Let C be a monoidal category, and define D as follows. Objects are pairs (F, γ) consisting of a functor
F : C C and a natural isomorphism

F (A)⊗B γA,B
F (A⊗B).

We can think of γ as witnessing that F commutes with right multiplication. A morphism (F, γ) (F ′, γ′)
is a natural transformation θ : F ⇒ F ′ making the following square commute for all objects A,B of C:

F (A)⊗B F (A⊗B)

F ′(A)⊗B F ′(A⊗B)

γA,B

θA ⊗ idB

γ′A,B

θA⊗B (1.32)

3

Composition is given by (θ′ ◦θ)A = θ′A ◦θA. The tensor product of objects in D is given by (F, γ)⊗(F ′, γ′) :=
(F ◦ F ′, δ), where δ is the composition

F (F ′(A))⊗B
γF ′(A),B

F (F ′(A)⊗B)
F (γ′A,B)

F (F ′(A⊗B));

the tensor product of morphisms θ : F → F ′ and θ′ : G→ G′ is the composite

F (G(A))
θG(A)

F ′(G(A))
F ′(θ′A)

F ′(G′(A)),

which again satisfies (1.32). It can be checked that ((F, γ)⊗(F ′, γ′))⊗(F ′′, γ′′) = (F, γ)⊗((F ′, γ′)⊗(F ′′, γ′′)),
and that the category accepts a strict monoidal structure, with unit object given by the identity functor on
C.

Now consider the functor L : C D given by

L(A) = (A⊗−, αA,−,−), L(f) = f ⊗−.

We can think of this functor as “multiplying on the left”. We will show that L is a full, faithful monoidal
functor. For faithfulness, if L(f) = L(g) for morphisms f, g in C, that means f ⊗ idI = g ⊗ idI , and so
f = g by naturality of ρ. For fullness, let θ : L(A) L(B) be a morphism in D, and define f : A B as the
composite

A
ρ−1
A A⊗ I θI B ⊗ I ρB B.

Then the following diagram commutes:

A⊗ C (A⊗ I)⊗ C A⊗ (I ⊗ C) A⊗ C

B ⊗ C (B ⊗ I)⊗ C B ⊗ (I ⊗ C) B ⊗ C

ρ−1A ⊗ idC αA,I,C idA ⊗ λC

f ⊗ idC θI ⊗ idC θI⊗C θC

ρ−1B ⊗ idC
αB,I,C idB ⊗ λC

The left square commutes by definition of f , the middle square by (1.32), and the right square by naturality
of θ. Moreover, the rows both equal the identity by the triangle identity. Hence θC = f ⊗ idC , and so
θ = L(f).

We now show that L is a monoidal functor. Define the isomorphism L0 : I L(I) to be λ−1, and define
(L2)A,B : L(A)⊗ L(B) L(A⊗B) by

α−1A,B,− :
(
A⊗ (B ⊗−), (A⊗ αB,−,−) ◦ αA,B⊗−,−

) (
(A⊗B)⊗−, αA⊗B,−,−

)
.

These form a well-defined morphism in D, because equation (1.32) is just the pentagon identity of C.
Verifying equations (1.29) comes down to the fact that λI = ρI and the triangle identity. Because D is strict,
equation (1.28) comes down the pentagon identity of C.

Finally, let Cs be the subcategory of D encompassing all objects that are isomorphic to those of the form
L(A), and all morphisms between them. Then Cs is still a strict monoidal category, and L restricts to a
functor L : C Cs that is still monoidal, full and faithful, but is additionally essentially surjective on objects
by construction. Thus L : C Cs is a monoidal equivalence.

The Strictification Theorem means that, if you prefer, you can always strictify your monoidal category to
obtain an equivalent one for which α, λ and ρ are all identities.

4

1.11 The coherence theorem

We now derive the Coherence Theorem from the Strictification Theorem. To state the former, we have to be
more precise about what we have coyly called ‘well-typed’ equations. To do so, we will talk about different
ways to parenthesize a finite list of things. More precisely, define bracketings in C inductively: () is the
empty bracketing; for any object A in C there is a bracketing A; and if v and w are bracketings, then so is
(v⊗w). For example, v = (A⊗B)⊗ (C ⊗D) and ((A⊗B)⊗C)⊗D are different bracketings, even though
they could denote the same object of C. Actually, a bracketing is independent of the objects and even of the
category. So for example, we may use the notation v(W,X, Y, Z) = (W ⊗X)⊗ (Y ⊗Z) to define a procedure
v that operates on any quartet of objects. Thus it also makes sense to talk about transformations θ : v ⇒ w
built from coherence isomorphisms.

Theorem 1.34 (Coherence for monoidal categories). Let v(A, . . . , Z) and w(A, . . . , Z) be bracketings in a
monoidal category C. Any two transformations θ, θ′ : v ⇒ w built from α, α−1, λ, λ−1, ρ, ρ−1, id, ⊗, and ◦
are equal.

Proof. Let L : C Cs be the monoidal equivalence from Theorem 1.33. Inductively define a morphism
Lv : v(L(A), . . . , L(Z)) L(v(A, . . . , Z)) in Cs by setting L() = L0, LA = L(A), and L(x⊗y) = L2 ◦(Lx⊗Ly).
Define Lw similarly. Then the following diagram in Cs commutes:

v(L(A), . . . , L(Z)) w(L(A), . . . , L(Z))

L(v(A, . . . , Z)) L(w(A, . . . , Z))

θ(L(A),...,L(Z))

Lv

L(θ(A,...,Z))

Lw

The same diagram for θ′ commutes similarly. But as Cs is a strict monoidal category, and θ and θ′ are built
from coherence isomorphisms, we must have θ(L(A),...,L(Z)) = θ′(L(A),...,L(Z)) = id. Since Lv and Lw are by

construction isomorphisms, it follows from the diagram above that L(θ(A,...,Z)) = L(θ′(A,...,Z)). Finally, L is

an equivalence and hence faithful, so θ(A,...,Z) = θ′(A,...,Z).

Notice that the transformations θ, θ′ in the previous theorem have to go from a single bracketing v to a
single bracketing w. Suppose we have an object A for which A⊗A = A. Then A

idA A and A
αA,A,A

A are
both well-defined morphisms. But equating them does not give a well-formed equation, as they do not give
rise to transformations from the same bracketing to the same bracketing.

1.12 Braided monoidal functors

Versions of the Strictification Theorem 1.33 and the Coherence Theorem still hold for braided monoidal
categories and symmetric monoidal categories. In fact, they link nicely with the Correctness Theorems for
the graphical calculus. We will not go into details of the proofs, but just record the statements here.

Definition 1.35 (Braided monoidal functor, symmetric monoidal functor). A braided monoidal functor is
a monoidal functor C F D between braided monoidal categories, that additionally makes the following
diagrams commute:

F (A)⊗ F (B) F (B)⊗ F (A)

F (A⊗B) F (B ⊗A)

σF (A),F (B)

(F2)A,B

F (σA,B)

(F2)B,A (1.33)

5

A symmetric monoidal functor is a braided monoidal functor between symmetric monoidal categories.

We call a braided monoidal category strict when the underlying monoidal category is strict. This does
not mean that the braiding should be the identity.

Theorem 1.36 (Strictification for braided monoidal categories). Every braided monoidal category has a
braided monoidal equivalence to a strict braided monoidal category. Every symmetric monoidal category has
a symmetric monoidal equivalence to a strict symmetric monoidal category.

To state the coherence theorem in the braided and symmetric case, we again have to be precise about
what ‘well-formed’ equations are. Consider a morphism f in a braided monoidal category that is built from
the coherence isomorphisms and the braiding, and their inverses, using identities and tensor products. Using
the graphical calculus of braided monoidal categories, we can always draw it as a braid . By the correctness of
the graphical calculus for braided monoidal categories, this picture defines a morphism g built from coherence
isomorphisms and the braiding in a canonical bracketing, say with all brackets to the left. Moreover, up to
isotopy of the picture this is the unique such morphism g. We call that morphism g, or equivalently the
isotopy class of its picture, the underlying braid of the original morphism f . Since the underlying braid is
merely about the connectivity, and not about the actual objects, it lifts from morphisms to bracketings.

Corollary 1.37 (Coherence for braided monoidal categories). Let v(A, . . . , Z) and w(A, . . . , Z) be bracketings
in a braided monoidal category C. Any two transformations θ, θ′ : v ⇒ w built from α, α−1, λ, λ−1, ρ, ρ−1,
σ, σ−1, id, ⊗, and ◦, are equal if and only if they have the same underlying braid.

Proof. By definition of the underlying braid, this follows immediately from the Coherence Theorem 1.34
for monoidal categories and the Correctness Theorem of the graphical calculus for braided monoidal
categories.

For symmetric monoidal categories, we can simplify the underlying braid to an underlying permutation.
It is a bijection between the set {1, . . . , n} and itself, where n is the number of objects in the bracketing,
namely precisely the bijection that is indicated by the graphical calculus when we draw the bracketing.

Corollary 1.38 (Coherence for symmetric monoidal categories). Let v(A, . . . , Z) and w(A, . . . , Z) be
bracketings in a symmetric monoidal category C. Any two transformations θ, θ′ : v ⇒ w built from α, α−1,
λ, λ−1, ρ, ρ−1, σ, σ−1, id, ⊗, and ◦, are equal if and only if they have the same underlying permutation.

Proof. By definition of the underlying permutation, this follows immediately from Corollary 1.37, and the
correctness of the graphical calculus for symmetric monoidal categories.

6

