Categories and Quantum Informatics

Week 3: Scalars

Chris Heunen

Scalars

Monoidal structure of **Hilb** encodes structure of complex numbers.

- ▶ As a set: $Hilb(\mathbb{C}, \mathbb{C})$, endomorphisms of tensor unit.
- ▶ Multiplication: of complex numbers is given by composition.
- ▶ Commutativity: ab = ba for all elements of $Hilb(\mathbb{C}, \mathbb{C})$.

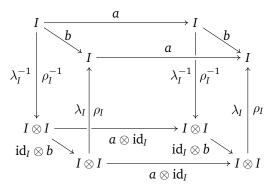
A scalar in a monoidal category is a morphism $I \rightarrow I$.

Can replicate a lot of linear algebra in any monoidal category.

Scalars commute

Lemma: In a monoidal category, scalars commute.

Proof. Consider the following diagram, for any two scalars $I \xrightarrow{a,b} I$:



Side cells: naturality of λ_I and ρ_I . Bottom cell: interchange law. Vertical arrows: coherence.

We draw a scalar $I \stackrel{a}{\longrightarrow} I$ as a circle:

We draw a scalar $I \stackrel{a}{\longrightarrow} I$ as a circle:

a

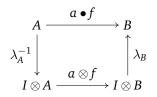
Commutativity of scalars becomes:

Diagrams are isotopic, so it follows from correctness of the graphical calculus that scalars are commutative.

Scalar multiplication

Can multiply linear map $H \xrightarrow{f} J$ with number $c \in \mathbb{C}$, to get $H \xrightarrow{cf} J$. Works in any monoidal category.

The left scalar multiplication of morphism $A \xrightarrow{f} B$ with scalar $I \xrightarrow{a} I$ is



Graphically:

Scalar multiplication

Many familiar properties. For $I \xrightarrow{a,b} I$ and $A \xrightarrow{f} B$, $B \xrightarrow{g} C$:

- ightharpoonup $\operatorname{id}_{I} \bullet f = f$
- ightharpoonup a
 ightharpoonup b = a
 ightharpoonup b
- $\bullet \ a \bullet (b \bullet f) = (a \bullet b) \bullet f$
- $\blacktriangleright \ (b \bullet g) \circ (a \bullet f) = (b \circ a) \bullet (g \circ f)$

Proof. Use graphical calculus.

Scalar multiplication

Many familiar properties. For $I \xrightarrow{a,b} I$ and $A \xrightarrow{f} B$, $B \xrightarrow{g} C$:

- ightharpoonup $\operatorname{id}_{I} \bullet f = f$
- ightharpoonup a
 ightharpoonup b = a
 ightharpoonup b
- $\bullet \ a \bullet (b \bullet f) = (a \bullet b) \bullet f$
- $\blacktriangleright \ (b \bullet g) \circ (a \bullet f) = (b \circ a) \bullet (g \circ f)$

Proof. Use graphical calculus.

- ▶ In **Hilb**: if $a \in \mathbb{C}$ is a scalar and $H \xrightarrow{f} K$ a morphism, then $H \xrightarrow{a \bullet f} K$ is the morphism $v \mapsto af(v)$.
- ▶ In **Set**, scalar multiplication is trivial: if $A \xrightarrow{f} B$ is a function, then id₁ f = f is again the same function.
- ▶ In **Rel**: for any relation $A \xrightarrow{R} B$, true R = R, and false $R = \emptyset$.

Daggers

In the definition of **FHilb**, something was a bit strange: we didn't use the inner products at all.

Inner products give adjoint linear maps:

$$(g \circ f)^{\dagger} = f^{\dagger} \circ g^{\dagger}$$
 $id_H^{\dagger} = id_H$ $(f^{\dagger})^{\dagger} = f$

Taking adjoints: contravariant involutive functor, identity on objects.

Daggers

In the definition of **FHilb**, something was a bit strange: we didn't use the inner products at all.

Inner products give adjoint linear maps:

$$(g \circ f)^{\dagger} = f^{\dagger} \circ g^{\dagger}$$
 $id_H^{\dagger} = id_H$ $(f^{\dagger})^{\dagger} = f$

Taking adjoints: contravariant involutive functor, identity on objects.

Conversely, can recover inner products from this functor:

$$(\mathbb{C} \xrightarrow{w} H \xrightarrow{\nu^{\dagger}} \mathbb{C}) \equiv \nu^{\dagger}(w(1)) = \langle 1 | \nu^{\dagger}(w(1)) \rangle = \langle \nu | w \rangle$$

So \dagger and $\langle -|-\rangle$ encode *equivalent* information.

Dagger categories

A dagger on a category C is an involutive contravariant functor $\dagger\colon C\to C$ that is the identity on objects. A dagger category is a category equipped with a dagger.

Examples:

- ▶ Hilb is a dagger category using adjoint linear maps.
- ▶ $Mat_{\mathbb{C}}$ is a dagger category using the conjugate transpose.
- ▶ **Rel** can be given a dagger functor by relational converse: for $S \xrightarrow{R} T$, define $T \xrightarrow{R^{\dagger}} S$ by setting $t R^{\dagger} s$ if and only if s R t.

Dagger categories

A dagger on a category C is an involutive contravariant functor $\dagger\colon C\to C$ that is the identity on objects. A dagger category is a category equipped with a dagger.

Examples:

- ► Hilb is a dagger category using adjoint linear maps.
- ▶ $Mat_{\mathbb{C}}$ is a dagger category using the conjugate transpose.
- ▶ **Rel** can be given a dagger functor by relational converse: for $S \xrightarrow{R} T$, define $T \xrightarrow{R^{\dagger}} S$ by setting $t R^{\dagger} s$ if and only if s R t.
- ▶ **Set** cannot be made into a dagger category: **Set**(A, B) has size $|B|^{|A|}$, while **Set**(B, A) has size $|A|^{|B|}$.
- ▶ **Vect** cannot be given a dagger functor: **Vect**(\mathbb{C} , V) has a smaller cardinality than **Vect**(V, \mathbb{C}) when V is infinite-dimensional.

Dagger categories

A dagger on a category C is an involutive contravariant functor $\dagger\colon C\to C$ that is the identity on objects. A dagger category is a category equipped with a dagger.

Examples:

- ▶ Hilb is a dagger category using adjoint linear maps.
- ▶ $Mat_{\mathbb{C}}$ is a dagger category using the conjugate transpose.
- ▶ **Rel** can be given a dagger functor by relational converse: for $S \xrightarrow{R} T$, define $T \xrightarrow{R^{\dagger}} S$ by setting $tR^{\dagger}s$ if and only if sRt.
- ▶ **Set** cannot be made into a dagger category: **Set**(A, B) has size $|B|^{|A|}$, while **Set**(B, A) has size $|A|^{|B|}$.
- ▶ **Vect** cannot be given a dagger functor: **Vect**(\mathbb{C} , V) has a smaller cardinality than **Vect**(V, \mathbb{C}) when V is infinite-dimensional.
- ► **FVect** *can* be given dagger (e.g. by assigning an inner product to objects and constructing adjoints.) But not *canonically* so.

Terminology

A morphism $A \xrightarrow{f} B$ in a dagger category is:

- ▶ the adjoint of $B \xrightarrow{g} A$ when $g = f^{\dagger}$
- self-adjoint when $f = f^{\dagger}$
- ▶ a projection when $f = f^{\dagger}$ and $f \circ f = f$
- unitary when both $f^{\dagger} \circ f = \mathrm{id}_A$ and $f \circ f^{\dagger} = \mathrm{id}_B$
- an isometry when $f^{\dagger} \circ f = \mathrm{id}_A$
- ▶ a partial isometry when $f^{\dagger} \circ f$ is a projection
- ▶ positive when $f = g^{\dagger} \circ g$ for some morphism $H \stackrel{g}{\rightarrow} K$

Depict taking daggers by reflection in horizontal axis.

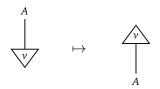
Depict taking daggers by reflection in horizontal axis.

$$\begin{array}{ccc}
B & A \\
\downarrow & \downarrow \\
f & \downarrow \\
A & B
\end{array}$$

To differentiate, draw morphisms in a way that breaks symmetry. We also drop the label † from the morphism box.

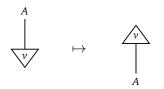
States, effects, scalars

Dagger gives a correspondence between states and effects:



States, effects, scalars

Dagger gives a correspondence between states and effects:



Inner product between two states:

$$\langle v|w\rangle = \bigvee_{w} = \bigvee_{w}$$

Generalised form of Dirac's bra-ket notation.

Way of the dagger

A monoidal dagger category is a dagger category that is also monoidal, such that:

- $(f \otimes g)^{\dagger} = f^{\dagger} \otimes g^{\dagger}$ for all morphisms f and g;
- the natural isomorphisms α , λ and ρ are unitary at every stage.

A braided monoidal dagger category is a monoidal dagger category equipped with a unitary braiding.

A symmetric monoidal dagger category is a braided monoidal dagger category for which the braiding is a symmetry.

Summary

- ▶ Scalars: morphisms $I \rightarrow I$
- Scalars commute
- Scalar multiplication
- ► Daggers: generalise inner product
- ▶ Way of the dagger: monoidal dagger categories