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Scalars

Monoidal structure of Hilb encodes structure of complex numbers.
I As a set: Hilb(C,C), endomorphisms of tensor unit.
I Multiplication: of complex numbers is given by composition.
I Commutativity: ab = ba for all elements of Hilb(C,C).

A scalar in a monoidal category is a morphism I I.

Can replicate a lot of linear algebra in any monoidal category.
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Scalars commute

Lemma: In a monoidal category, scalars commute.
Proof. Consider the following diagram, for any two scalars I a,b I:

I I

I ⊗ I I ⊗ I

I I

I ⊗ I I ⊗ I

a

bb

a⊗ idI

λI ρI

ρ−1
Iλ−1

I

idI ⊗ b
a⊗ idI

idI ⊗ b

λ−1
I ρ−1

I

a

λI ρI

Side cells: naturality of λI and ρI. Bottom cell: interchange law.
Vertical arrows: coherence.
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Graphical calculus

We draw a scalar I a I as a circle:

a

Commutativity of scalars becomes:

a

b

=
b

a

Diagrams are isotopic, so it follows from correctness of the graphical
calculus that scalars are commutative.
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Scalar multiplication

Can multiply linear map H f J with number c ∈ C, to get H c·f J.
Works in any monoidal category.

The left scalar multiplication of morphism A f B with scalar I a I is

A B

I ⊗ A I ⊗ B

a • f

λ−1
A λB

a⊗ f

Graphically:

s f
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Scalar multiplication

Many familiar properties. For I a,b−−→ I and A f−→ B, B g−→ C:
I idI • f = f
I a • b = a ◦ b
I a • (b • f) = (a • b) • f
I (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f)

Proof. Use graphical calculus.

I In Hilb: if a ∈ C is a scalar and H f K a morphism, then
H a•f K is the morphism v 7→ af(v).

I In Set, scalar multiplication is trivial: if A f B is a function, then
id1 • f = f is again the same function.

I In Rel: for any relation A R B, true • R = R, and false • R = ∅.
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Daggers

In the definition of FHilb, something was a bit strange:
we didn’t use the inner products at all.

Inner products give adjoint linear maps:

(g ◦ f)† = f † ◦ g† idH
† = idH (f †)† = f

Taking adjoints: contravariant involutive functor, identity on objects.

Conversely, can recover inner products from this functor:

(C w H v† C) ≡ v†(w(1)) = 〈1|v†(w(1))〉 = 〈v|w〉

So † and 〈−|−〉 encode equivalent information.

7 / 13



Daggers

In the definition of FHilb, something was a bit strange:
we didn’t use the inner products at all.

Inner products give adjoint linear maps:

(g ◦ f)† = f † ◦ g† idH
† = idH (f †)† = f

Taking adjoints: contravariant involutive functor, identity on objects.

Conversely, can recover inner products from this functor:

(C w H v† C) ≡ v†(w(1)) = 〈1|v†(w(1))〉 = 〈v|w〉

So † and 〈−|−〉 encode equivalent information.

7 / 13



Dagger categories
A dagger on a category C is an involutive contravariant functor
† : C C that is the identity on objects. A dagger category is a
category equipped with a dagger.

Examples:
I Hilb is a dagger category using adjoint linear maps.
I MatC is a dagger category using the conjugate transpose.
I Rel can be given a dagger functor by relational converse: for

S R T, define T R†
S by setting t R† s if and only if s R t.

I Set cannot be made into a dagger category: Set(A,B) has size
|B||A|, while Set(B,A) has size |A||B|.

I Vect cannot be given a dagger functor: Vect(C,V) has a smaller
cardinality than Vect(V,C) when V is infinite-dimensional.

I FVect can be given dagger (e.g. by assigning an inner product to
objects and constructing adjoints.) But not canonically so.
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Terminology

A morphism A f B in a dagger category is:
I the adjoint of B g A when g = f †

I self-adjoint when f = f †

I a projection when f = f † and f ◦ f = f
I unitary when both f † ◦ f = idA and f ◦ f † = idB

I an isometry when f † ◦ f = idA

I a partial isometry when f † ◦ f is a projection
I positive when f = g† ◦ g for some morphism H g K
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Graphical calculus

Depict taking daggers by reflection in horizontal axis.

A

B

f †7→

B

A

f †

To differentiate, draw morphisms in a way that breaks symmetry.
We also drop the label † from the morphism box.
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States, effects, scalars

Dagger gives a correspondence between states and effects:

v

A

7→
v

A

Inner product between two states:

〈v|w〉 =

w

v

= w
v

Generalised form of Dirac’s bra-ket notation.
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Way of the dagger

A monoidal dagger category is a dagger category that is also
monoidal, such that:

I (f ⊗ g)† = f † ⊗ g† for all morphisms f and g;
I the natural isomorphisms α, λ and ρ are unitary at every stage.

A braided monoidal dagger category is a monoidal dagger category
equipped with a unitary braiding.

A symmetric monoidal dagger category is a braided monoidal dagger
category for which the braiding is a symmetry.
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Summary

I Scalars: morphisms I I
I Scalars commute
I Scalar multiplication
I Daggers: generalise inner product
I Way of the dagger: monoidal dagger categories
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