Categories and Quantum Informatics

Week 2: Hilbert spaces, Monoidal categories

Chris Heunen

vy
3
> THE UNIVERSITY of EDINBURGH

@ informatics

1/30



Vector spaces
Set V with element 0, functions +: VxV—V,and -: Cx V—V

>

>

>

additive associativity: u+ (v+w) = (u+v) +w;

additive commutativity: u +v =v + u;

additive unit: v+ 0 = v;

additive inverses: there exists a —v € V such thatv + (—v) = 0;
additive distributivity: a - (u+v) = (a-u) + (a-v)

scalar unit: 1-v =v;

scalar distributivity: (a+b)-v=(a-v)+ (b-v);

scalar compatibility: a- (b -v) = (ab) - v.

V4w

Example: C"



Linear maps

Function f: V— W is linear when

fv+w) =f) +fw)
fla-v)=a-f{v)

Vector spaces and linear maps form a category Vect



Bases and matrices

» Vectors {e;} form basis when any vector v takes the form
v =) ;vie; for v; € C in precisely one way.

» Any vector space has a basis
any two bases have the same cardinality: dimension

» Finite-dimensional vector spaces and linear maps
form a category FVect



Bases and matrices

» Vectors {e;} form basis when any vector v takes the form
v =) ;vie; for v; € C in precisely one way.

» Any vector space has a basis
any two bases have the same cardinality: dimension

» Finite-dimensional vector spaces and linear maps
form a category FVect

» Given bases {d;} and {¢;}, linear map V Lw gives matrix f(d;);,
and vice versa

» There is a category Matc of natural numbers and matrices
There is an equivalence Mat¢c — FVect given by n — C"



Hilbert spaces

Vector space H with inner product (—|—): H x H— C such that
» conjugate-symmetric: (v|iw) = (w|v)*

» linear in second argument:
(vla-w) =a- (vlw) and (ulv+w) = (ulv) + (ujw)

» positive definite: (v|v) > 0 with equality iff v =0

» complete in the norm |[v|| = \/(v|v)
Gf 7%, |vill < oo then limy, [v — > ; ;|| = 0 for some v)
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Hilbert spaces

Vector space H with inner product (—|—): H x H— C such that
» conjugate-symmetric: (v|iw) = (w|v)*

» linear in second argument:
(vla-w) =a- (vlw) and (ulv+w) = (ulv) + (ujw)

» positive definite: (v|v) > 0 with equality iff v =0

» complete in the norm |[v|| = \/(v|v)
Gf 7%, |vill < oo then limy, [v — > ; ;|| = 0 for some v)

Linear f: H— K is bounded when |[f(v)| < |If|| - ||v|| for some ||f|| € R

Hilbert spaces and bounded linear maps form category Hilb
Finite-dimensional Hilbert spaces form category FHilb



Dual space

v

Basis is orthogonal when (e;|e;) = O for i # j;
orthonormal if (e;|e;) =1

Bounded H %> K has adjoint k2% H with F)|w) = W|ff(w))
(conjugate transpose matrix)

v

Givenv € H, its ket(C&Hisz»%zv; bra H-L Cisw s (viw)

v

v

Dual Hilbert space H* is Hilb(H, C)
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Tensor products
Function f: U x V— W is bilinear when it is linear in each variable
Tensor product of vector spaces U and V is a vector space U ® V with
bilinear f: U x V— U ® V such that for every bilinear g: U x V—W
there exists unique linear h: U® V— W such thatg=hof

(bilinear) f
UxV U®
: h (linear)
(bilinear) g v

w

Hilbert space with (u @ v|u’ @ V') = (u|u’) (v|V')



Tensor products
Function f: U x V— W is bilinear when it is linear in each variable
Tensor product of vector spaces U and V is a vector space U ® V with
bilinear f: U x V— U ® V such that for every bilinear g: U x V—W
there exists unique linear h: U® V— W such thatg=hof

(bilinear) f
UxV U®
: h (linear)
(bilinear) g v

w
Hilbert space with (u @ v|u’ @ V') = (u|u’) (v|V')

fHL H and K 5K thenfog: HOK —H @K

(fllg) (flzg) (flng)

(fz.1g) (fzzg) (fzng)

Feo=| o o
(fmlg) (fmZg) (fmng)



Monoidal categories

Category theory describes systems and processes:
» physical systems, and physical processes governing them,;
» data types, and algorithms manipulating them;
» algebraic structures, and structure-preserving functions;

» logical propositions, and implications between them.



Monoidal categories

Category theory describes systems and processes:
» physical systems, and physical processes governing them,;
» data types, and algorithms manipulating them;
» algebraic structures, and structure-preserving functions;
» logical propositions, and implications between them.

Monoidal category theory adds the idea of parallelism:
» independent physical systems evolve simultaneously;
» running computer algorithms in parallel;
» products or sums of algebraic or geometric structures;

» using separate proofs of P and Q to construct a proof of the
conjunction (P and Q).



Why so serious?

» Let A, B and C be processes, and let ® be parallel composition
» What relationship should there be between these systems?

(A®B)®C A® (B®C)
» It’s not right to say they’re equal, since even just for sets,
(SxT)xU#Sx(TxU).

» Maybe they should be isomorphic — but then what equations
should these isomorphisms satisfy?

» How do we treat trivial systems?
» What should the relationship be between A ® B and B ® A?

9/30



Monoidal category
is a category C equipped with the following data:
» a tensor product functor

®: CxC—C;
» a unit object
I € Ob(C);
» an associator natural isomorphism
(A®B)®C2E% A @ (B® C);
» a left unitor natural isomorphism
QA4 A;
» and a right unitor natural isomorphism

AQILAA.
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Monoidal category
must satisfy triangle and pentagon equations:

QA 1B
A®)®B——" A (I®B)

pA®1dB\‘ /1dA®/\B

(A (B®C)) @D WA@((B@C)@D)

oaBc® idD/ \idA ® aB.cD
(A®B)®@C)®D A® (B® (C®D))

04A®m %A,B?,C(@D

(A®B)® (C®D)
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Monoidal category
must satisfy triangle and pentagon equations:

QA 1B
A®)®B——" A (I®B)

pA®1dB\‘ /1dA®/\B

(A (B®C)) @D WA@((B@C)@D)

oaBc® idD/ \idA ® aB.cD
(A®B)®@C)®D A® (B® (C®D))

04A®m %AJ;C(@D

(A®B)® (C®D)

Coherence theorem for monoidal categories: If the pentagon and
triangle equations hold, so does any well-typed equation built from
a, A, p and their inverses. (to appreciate this, try to prove A\; = p;!)
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Set is monoidal

v

tensor product is Cartesian product of sets
» tensor unit is a chosen singleton set {e}

» associators (A x B) x C-~22% A x (B x C)
defined by ((a,b),c) ~ (a, (b,c))

left unitors I x A4 A defined by (e,a) —a

v

v

right unitors A x I -“+ A defined by (a, ) — a

Other tensor products exist, this one is canonical for classical theory
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Rel is monoidal

» tensor product is Cartesian product of sets
on morphisms: (a,c)(R x S)(b,d) if and only if aRb and cSd

» tensor unit is a chosen singleton set = {e}

» associators (A x B) x C—22%, A x (B x C) are the relations

defined by ((a,b),c) ~ (a, (b,c))
» left unitors I x A4 A are the relations defined by (e,a) ~a

» right unitors A x I -“4+ A are the relations defined by (a,e) ~ a

This is not a categorical product in Rel



Hilb is monoidal

» tensor product ®: Hilb x Hilb — Hilb is tensor product
» tensor unit I is the one-dimensional Hilbert space C

» associators (H ®J) ® K225 H @ (J @ K)
defined by (u®@v)@w—u® (vew)

» left unitors C ® H 2% H defined by 1 ® u — u

» right unitors H ® C %> H defined byu ® 1 — u

Other tensor products exist, this one is canonical for quantum theory
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Interchange

Any morphisms A LB, B4 C, D EandE J, F in a monoidal

category satisfy the interchange law:

(gof)@(ioh)=(g@j)o(feh)

Proof:

gof)®(joh)=w®(gof,joh)
= ®((g,j) o (f,h)) (composition in C x C)
= (®(g.,7)) o (®(f,h))  (functoriality of ®)
= (g®j)o(f®h)



Graphical calculus

For morphisms A S.BandC E.D, draw A ® CcL% B oD as:
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Graphical calculus

For morphisms A S.BandC E.D, draw A ® CcL% B oD as:

The tensor unit I is drawn as the empty diagram:
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Graphical calculus
For morphisms A S.BandC E.D, draw A ® CcL% B oD as:

The tensor unit I is drawn as the empty diagram:

Unitors and associators are also not depicted:

A PA QA B.C
Coherence is essential for the graphical calculus: as there can only be
a single morphism built from their components of any given type, it

doesn’t matter that their graphical calculus encodes no information
16/30



Graphical calculus

Interchange law trivialises:

(gof)®(oh) = (g®jlo(f®h)
0| |07 & O
A w7 o

Apparent complexity of monoidal categories just complexity of

geometry of the plane. In geometrical notation complexity vanishes.
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Isotopy

Two diagrams are planar isotopic when one can be deformed
continuously into the other, such that:

» diagrams remain confined to a rectangular region of the plane
» input and output wires terminate at lower and upper boundaries

» components never intersect

(Height of diagrams may change, and input/output wires may slide
horizontally along boundary, but may not change order)
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Correctness

Theorem: well-formed equation f = g in monoidal category follows
from the axioms <= it holds graphically up to planar isotopy
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Correctness

Theorem: well-formed equation f = g in monoidal category follows
from the axioms <= it holds graphically up to planar isotopy

» P(f,g) = ‘under the axioms of a monoidal category, f = g’
» Q(f,g) = ‘graphically, f and g are planar isotopic’

Soundness is the assertion that P(f,g) = Q(f,g) for all such f and g
(easy to prove: just check each axiom)

Completeness is the converse: Q(f,g) = P(f,g) for such f and g

(harder: must show that planar isotopy is generated by finite set of
moves, each being implied by the monoidal axioms)
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States

Cannot ‘look inside’ object to see elements, must use morphisms.
A state of an object A is a morphism I — A.

A



States

Cannot ‘look inside’ object to see elements, must use morphisms.

A state of an object A is a morphism I — A.

A

» In Hilb: linear functions C — H, so elements of H
» In Set: functions {e} — A, so elements of A
» In Rel: relations {e} & A, so subsets of A
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Effects

An effect on an object A is a morphism A —1

Interpret effect as observation that a system has some property
States, effects, and other morphisms, build up histories:

A

/0N
N/
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Joint states

A morphism [ -+ A ® B is a joint state of A and B.

A B

=

—1
It is a product state when of the form I Ay ® 1% A @ B:
A B A B
c a b

It is entangled when not a product state.
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Joint states: examples

» In Set:

» joint states of A and B are elements of A x B
» product states are elements (a,b) € A x B
» entangled states don’t exist
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Joint states: examples

» In Set:

» joint states of A and B are elements of A x B
» product states are elements (a,b) € A x B
» entangled states don’t exist

» In Rel:
» joint states of A and B are subsets of A x B
» product states are ‘square’ subsets V. x W C A x B
» entangled states are subsets not of this form



Joint states: examples

» In Set:

» joint states of A and B are elements of A x B
» product states are elements (a,b) € A x B
» entangled states don’t exist

» In Rel:
» joint states of A and B are subsets of A x B
» product states are ‘square’ subsets V. x W C A x B
» entangled states are subsets not of this form

» In Hilb:
» joint states of H and K are elements of H ® K
» product states are factorizable states
» entangled states are entangled states in the quantum sense



Braiding

A braided monoidal category has a natural isomorphism

A®B-25B®A
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Braiding

A braided monoidal category has a natural isomorphism

A®B25BwA

satisfying the hexagon equations

AB®

2BoC) 2 Bac) oA

/aABC O‘BCA\

(A®B)® ® (C®A)

oap ® idc
idp ® oa,c

(B®A)®C ——BR A®C(C)
QBAC

A@B)®C 2 ¢ (Ao B)

/aA B,C ac,A,B\

®(B®C) (C®A)®B

ida ® oB,c
oa,c ®1idp

Qac.B
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Braiding
A braided monoidal category has a natural isomorphism
A®B25LBeA

satisfying the hexagon equations

OA,BRC
AR (B®C) ——> (B®C)®A A@B)®C 2 ¢ (Ao B)

aABC aBCA/\ /aABC aC,A,B,\

A®B)® ®(CRA) ® (B®C) (C®A)®B
oap ® idc ida ® oB,c
idg ®UAC/ oac ®id3/
B®A)®C rAc B (A®C) A®(C®B)7>(A®C)®B
A,C,B

» In Hilb: H® K Z*SK @ H defined bya®@ b — b®a
» In Set: A x B-2% B x A defined by (a,b) — (b,a)
» In Rel: A x B-"% B x A defined by (a,b) ~ (b,a)
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Braiding

We draw the braiding as:

A >

-1

A®QB- 5 BoA BoA A5 A B
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Braiding

We draw the braiding as:

A >

-1
A®QB- 5 BoA BoA A5 A B

The strands of a braiding cross over each other, so the diagrams are

not planar; they are inherently 3-dimensional. Invertibility becomes:

Q) - ) -

A 4



Braiding

Naturality becomes:

\

nlok
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Braiding

Naturality becomes:

Hexagon equations become:

AR R

\
\



Graphical calculus

Braided monoidal categories have sound and complete graphical
calculus: well-formed equation between morphisms in a braided
monoidal category follows from the axioms <= it holds in the

graphical language up to 3-dimensional isotopy.
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Symmetry
Braided monoidal category is symmetric when
0B A © 0aB = idagB
O
2

Strings can pass through each other, no knots: 4d geometry



Symmetry
Braided monoidal category is symmetric when
0B A © 0aB = idagB
O
2

Strings can pass through each other, no knots: 4d geometry

Because o, 5 = 054 we may draw
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Strictification

» Strictification theorem: every monoidal category is monoidally
equivalent to a strict one (unitors and associators are identities)
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Strictification

» Strictification theorem: every monoidal category is monoidally
equivalent to a strict one (unitors and associators are identities)

» Skeletalisation theorem: every category is equivalent to a
skeletal one (isomorphic objects are equal)

» Not every monoidal category is monoidally equivalent to
skeletal strict monoidal category
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Strictification

» Strictification theorem: every monoidal category is monoidally
equivalent to a strict one (unitors and associators are identities)

» Skeletalisation theorem: every category is equivalent to a
skeletal one (isomorphic objects are equal)

» Not every monoidal category is monoidally equivalent to
skeletal strict monoidal category

» But equivalence FHilb ~ Mat¢ is monoidal
(tensor product n ® m = nm, tensor unit 1)
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Summary

v

Category of Hilbert spaces and bounded linear maps

v

Monoidal category: coherent tensor products

v

Sound and complete graphical calculus

v

States and effects: histories

v

Braiding and symmetry: correct graphical calculus



