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We introduce our main example category Hilb by recalling in some detail the mathematical formalism
that underlies quantum theory: (complex) vector spaces, inner products, orthonormal bases, linear maps,
matrices, dimensions, and dual spaces. We then introduce the adjoint of a linear map between Hilbert spaces,
and define the terms unitary, isometry, partial isometry, and positive. We also define the tensor product of
Hilbert spaces, and introduce the Kronecker product of matrices.

0.9 Vector spaces

A vector space is a collection of elements that can be added to one another, and scaled.

Definition 0.1 (Vector space). A vector space, is a set V with a chosen element 0 ∈ V , an addition operation
+: V × V V , and a scalar multiplication operation · : C × V V , satisfying the following properties for
all u, v, w ∈ V and a, b ∈ C:

• additive associativity : u + (v + w) = (u + v) + w;

• additive commutativity : u + v = v + u;

• additive unit : v + 0 = v;

• additive inverses: there exists a −v ∈ V such that v + (−v) = 0;

• additive distributivity : a · (u + v) = (a · u) + (a · v)

• scalar unit : 1 · v = v;

• scalar distributivity : (a + b) · v = (a · v) + (b · v);

• scalar compatibility : a · (b · v) = (ab) · v.

The prototypical example of a vector space is Cn, the cartesian product of n copies of the complex numbers.

Definition 0.2 (Linear map, antilinear map). A linear map is a function f : V W between vector spaces,
with the following properties, for all u, v ∈ V and a ∈ C:

f(u + v) = f(u) + f(v) (16)

f(a · v) = a · f(v) (17)

An anti-linear map is a function that also satisfies (16), but instead of (17), has the additional property

f(a · v) = a∗ · f(v), (18)

where the star denotes complex conjugation.
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We can use these definitions to build a category of vector spaces.

Definition 0.3 (Vect, FVect). The category Vect of vector spaces and linear maps is defined as follows:

• objects are complex vector spaces;

• morphisms are linear functions;

• composition is composition of functions;

• identity morphisms are identity functions.

We define the category FVect to be the restriction of Vect to those vector spaces that are isomorphic to Cn

for some natural number n; these are also called finite-dimensional, see Definition 0.5 below.

A kernel of a morphism A
f

B in a category is an equaliser of f and the zero morphism A 0 B. Any
morphism f : V W in Vect has a kernel, namely the inclusion of ker(f) = {v ∈ V | f(v) = 0} into V .
Hence kernels in the categorical sense coincide precisely with kernels in the sense of linear algebra.

Definition 0.4. The direct sum of vector spaces V and W is the vector space V ⊕W , whose elements are
pairs (v, w) of elements v ∈ V and w ∈W , with entrywise addition and scalar multiplication.

Direct sums are both products and coproducts in the category Vect.

0.10 Bases and matrices

One of the most important structures we can have on a vector space is a basis. They give rise to a the notion
of dimension of a vector space, and let us represent linear maps using matrices.

Definition 0.5. For a vector space V , a family of elements {ei} is linearly independent when every element
a ∈ V can be expressed as a finite linear combination a =

∑
i aiei with coefficients ai ∈ C in at most one

way. It is a basis if additionally any a ∈ V can be expressed as such a finite linear combination.

Every vector space admits a basis, and any two bases for the same vector space have the same cardinality.
This is not clear, but quite nontrivial to show.

Definition 0.6. The dimension of a vector space V , written dim(V ), is the cardinality of any basis. A
vector space is finite-dimensional when it has a finite basis.

If vector spaces V and W have bases {di} and {ej}, and we fix some order on the bases, we can represent
a linear map V

f
W as the matrix with dim(W ) rows and dim(V ) columns, whose entry at row i and column

j is the coefficient f(vj)i. Composition of linear maps then corresponds to matrix multiplication (7). This
directly leads to a category.

Definition 0.7. The skeletal category MatC is defined as follows:

• objects are natural numbers 0, 1, 2, . . .;

• morphisms n m are matrices of complex numbers with m rows and n columns;

• composition is given by matrix multiplication;

• identities n
idn n are given by n-by-n matrices with entries 1 on the main diagonal, and 0 elsewhere.

This theory of matrices is ‘just as good’ as the theory of finite-dimensional vector spaces. This can be made
precise using the category theory we have developed.

Proposition 0.8. There is an equivalence of categories MatC FVect, sending n 7→ Cn, and a matrix to
its associated linear map.
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Proof. Because every finite-dimensional complex vector space H is isomorphic to Cdim(H), the functor R is
essentially surjective on objects. It is full and faithful since there is an exact correspondence between matrices
and linear maps for finite-dimensional vector spaces.

For a square matrix, the trace is an important operation.

Definition 0.9. For a square matrix with entries mij , its trace is the number
∑

i mii given by the sum of
the entries on the main diagonal.

0.11 Hilbert spaces

Hilbert spaces are structures that are built on vector spaces. The extra structure lets us define angles and
distances between vectors, and is used in quantum theory to calculate probabilities of measurement outcomes.

Definition 0.10. An inner product on a complex vector space V is a function 〈−|−〉 : V × V C that is:

• conjugate-symmetric: for all v, w ∈ V ,

〈v |w〉 = 〈w|v〉∗, (19)

• linear in the second argument: for all u, v, w ∈ V and a ∈ C,

〈v |a · w〉 = a · 〈v |w〉, (20)

〈u|v + w〉 = 〈u|v〉+ 〈u|w〉; (21)

• positive definite: for all v ∈ V ,

〈v |v〉 ≥ 0, (22)

〈v |v〉 = 0⇒ v = 0. (23)

Definition 0.11. For a vector space with inner product, the norm of an element v is ‖v‖ :=
√
〈v |v〉, a

nonnegative real number.

The complex numbers carry a canonical inner-product structure given by

〈a|b〉 := a∗b, (24)

where a∗ ∈ C denotes the complex conjugate of a ∈ C.
This norm satisfies the triangle inequality ‖v+w‖ ≤ ‖v‖+‖w‖ by virtue of the Cauchy-Schwarz inequality

|〈v |w〉|2 ≤ 〈v |v〉 · 〈w|w〉, that holds in any vector space with an inner product. Thanks to these properties,
it makes sense to think of ‖u− v‖ as the distance between vectors u and v.

A Hilbert space is an inner product space in which it makes sense to add infinitely many vectors in certain
cases.

Definition 0.12. A Hilbert space is a vector space H with an inner product that is complete in the
following sense: if a sequence v1, v2, . . . of vectors satisfies

∑∞
i=1 ‖vi‖ < ∞, then there is a vector v such

that ‖v −
∑n

i=1 vi‖ tends to zero.

Every finite-dimensional vector space with inner product is necessarily complete. Any vector space with an
inner product can be completed to a Hilbert space by adding in appropriate limit vectors.

There is a notion of bounded map between Hilbert spaces that makes use of the inner product structure.
The idea is that for each map there is some maximum amount by which the norm of a vector can increase.
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Definition 0.13 (Bounded linear map). A linear map f : H K between Hilbert spaces is bounded when
there exists a number b ∈ R such that ‖f(v)‖ ≤ b · ‖v‖ for all v ∈ H.

Every linear map between finite-dimensional Hilbert spaces is bounded.
Hilbert spaces and bounded linear maps form a category. For the purposes of modelling phenomena in

quantum theory, this category will be the main example that we use throughout the book.

Definition 0.14 (Hilb, FHilb). The category Hilb of Hilbert spaces and bounded linear maps is defined
as follows:

• objects are Hilbert spaces;

• morphisms are bounded linear maps;

• composition is composition of linear maps as ordinary functions;

• identity morphisms are given by the identity linear maps.

We define the category FHilb to be the restriction of Hilb to finite-dimensional Hilbert spaces.

This definition is perhaps surprising, especially in finite dimensions: since every linear map between Hilbert
spaces is bounded, FHilb is an equivalent category to FVect. In particular, the inner products play no
essential role. We will see later how inner products can be modelled categorically, using the idea of daggers.

Hilbert spaces have a more discerning notion of basis.

Definition 0.15 (Basis, orthogonal basis, orthonormal basis). For a Hilbert space H, an orthogonal basis is
a family of elements {ei} with the following properties:

• they are pairwise orthogonal, i.e. 〈ei |ej〉 = 0 for all i 6= j;

• every element a ∈ H can be written as an infinite linear combination of ei; i.e. there are coefficients
ai ∈ C for which ‖a−

∑n
i=1 aiei‖ tends to zero.

It is orthonormal when additionally 〈ei |ei〉 = 1 for all i.

Any orthogonal family of elements is automatically linearly independent. For finite-dimensional Hilbert
spaces, the ordinary notion of basis as a vector space is still useful, as given by Definition 0.5. Hence once we
fix (ordered) bases on finite-dimensional Hilbert spaces, linear maps between them correspond to matrices,
just as with vector spaces. For infinite-dimensional Hilbert spaces, however, having a basis for the underlying
vector space is rarely mathematically useful.

If two vector spaces carry inner products, we can give an inner product to their direct sum, leading to
the direct sum of Hilbert spaces.

Definition 0.16. The direct sum of Hilbert spaces H and K is the vector space H⊕K, made into a Hilbert
space by the inner product 〈(v1, w1)|(v2, w2)〉 = 〈v1 |v2〉+ 〈w1 |w2〉.

Direct sums provide both products and coproducts for the category Hilb. Hilbert spaces have the good
property that any closed subspace can be complemented. That is, if the inclusion U ↪→ V is a morphism
of Hilb satisfying ‖u‖U = ‖u‖H , then there exists another inclusion morphism U⊥ ↪→ V of Hilb with
V = U ⊕ U⊥. Explicitly, U⊥ is the orthogonal subspace {v ∈ V | ∀u ∈ U : 〈u|v〉 = 0}.

0.12 Adjoints

The inner product gives rise to the adjoint of a bounded linear map.
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Definition 0.17. For a bounded linear map f : H K, its adjoint f† : K H is the unique linear map
with the following property, for all u ∈ H and v ∈ K:

〈f(u)|v〉 = 〈u|f†(v)〉. (25)

The existence of the adjoint follows from the Riesz representation theorem for Hilbert spaces, which we do
not cover here. It follows immediately from (25) by uniqueness of adjoints that they also satisfy the following
properties:

(f†)† = f, (26)

(g ◦ f)† = f† ◦ g†, (27)

idH
† = idH . (28)

Taking adjoints is an anti-linear operation.
We can use adjoints to define various specialized classes of linear maps.

Definition 0.18. A bounded linear map H
f

K between Hilbert spaces is:

• self-adjoint when f = f†;

• a projection when f = f† and f ◦ f = f ;

• unitary when both f† ◦ f = idH and f ◦ f† = idK ;

• an isometry when f† ◦ f = idH ;

• a partial isometry when f† ◦ f is a projection;

• and positive when f = g† ◦ g for some bounded linear map H
g
K.

The following notation is standard in the physics literature.

Definition 0.19 (Bra, ket). Given an element v ∈ H of a Hilbert space, its ket C |v〉
H is the linear map

a 7→ av. Its bra H
〈v| C is the linear map w 7→ 〈v |w〉.

You can check that |v〉† = 〈v|. The reason for this notation is demonstrated by the following calculation:(
C |v〉

H
〈w| C

)
=
(
C 〈w|◦|v〉 C

)
=
(
C 〈w|v〉 C

)
(29)

In the final expression here, we identify the number 〈w|v〉 with the linear map that sends 1 7→ 〈w|v〉. We
see that the inner product (or ‘bra-ket’) 〈w|v〉 breaks into a composite of a bra 〈w| and a ket |v〉. Originally
due to Paul Dirac, this is traditionally called Dirac notation.

The correspondence between |v〉 and 〈v| leads to the notion of a dual space.

Definition 0.20. For a Hilbert space H, its dual Hilbert space H∗ is the vector space Hilb(H,C).

A Hilbert space is isomorphic to its dual in an anti-linear way: the map H H∗ given by |v〉 7→ ϕv = 〈v|
is an invertible anti-linear function. The inner product on H∗ is given by 〈ϕv |ϕw〉H∗ = 〈v |w〉H , and makes
the function |v〉 7→ 〈v| bounded.

For some bounded linear maps, we can define a notion of trace.

Definition 0.21 (Trace, trace class). When it converges, the trace of a positive linear map f : H H is
given by Tr(f) :=

∑
〈ei |f(ei)〉 for any orthonormal basis {ei}, in which case the map is called trace class.

If the sum converges for one orthonormal bases, then with some effort one can prove that it converges for
all orthonormal bases, and that the trace is independent of the chosen basis. Also, in the finite-dimensional
case, the trace defined in this way agrees with the matrix trace of Definition 0.9.
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0.13 Tensor products

The tensor product is a way to make a new vector space out of two given ones. With some work the tensor
product can be constructed explicitly, but it is only important for us that it exists, and is defined up to
isomorphism by a universal property. If U , V and W are vector spaces, a function f : U × V W is called
bilinear when it is linear in each variable: when the function u 7→ f(u, v) is linear for each v ∈ V , and the
function v 7→ f(u, v) is linear for each u ∈ U .

Definition 0.22. The tensor product of vector spaces U and V is a vector space U ⊗ V together with a
bilinear function f : U ×V U ⊗V such that for every bilinear function g : U ×V W there exists a unique
linear function h : U ⊗ V W such that g = h ◦ f .

U × V U ⊗ V

W

(bilinear) f

(bilinear) g
h (linear)

The function f usually stays anonymous and is written as (u, v) 7→ u⊗v. It follows that arbitrary elements of
U ⊗V take the form

∑n
i=1 aiui⊗vi for ai ∈ C, ui ∈ U , and vi ∈ V . The tensor product also extends to linear

maps. If f1 : U1 V1 and f2 : U2 V2 are linear maps, there is a unique linear map f1⊗f2 : U1⊗U2 V1⊗V2

that satisfies (f1 ⊗ f2)(u1 ⊗ u2) = f1(u1)⊗ f2(u2) for u1 ∈ U1 and u2 ∈ U2. In this way, the tensor product
becomes a functor ⊗ : Vect×Vect Vect.

Definition 0.23. The tensor product of Hilbert spaces H and K is the following Hilbert space H ⊗ K:
take the tensor product of vector spaces; give it the inner product 〈u1 ⊗ v1 |u2 ⊗ v2〉 = 〈u1 |u2〉H · 〈v1 |v2〉K ;
complete it. If H

f
H ′ and K

g
K ′ are bounded linear maps, then so is the continuous extension of the

tensor product of linear maps to a function that we again call f ⊗ g : H ⊗K H ′⊗K ′. This gives a functor
⊗ : Hilb×Hilb Hilb.

If {ei} is an orthonormal basis for Hilbert space H, and {fj} is an orthonormal basis for K, then {ei⊗fj}
is an orthonormal basis for H ⊗K. So when H and K are finite-dimensional, there is no difference between
their tensor products as vector spaces and as Hilbert spaces.

Definition 0.24 (Kronecker product). When finite-dimensional Hilbert spaces H1, H2,K1,K2 are equipped
with fixed ordered orthonormal bases, linear maps H1

f
K1 and H2

g
K2 can be written as matrices. Their

tensor product H1 ⊗ H2
f⊗g

K1 ⊗ K2 corresponds to the following block matrix, called their Kronecker
product :

(f ⊗ g) :=


(
f11g

) (
f12g

)
· · ·

(
f1ng

)(
f21g

) (
f22g

)
. . .

(
f2ng

)
...

...
. . .

...(
fm1g

) (
fm2g

)
. . .

(
fmng

)
 . (30)
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