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ZX calculus

Can break many-qubit gates into more primitive components.
Adding a couple of rules to complementary observables:

I can describe any possible quantum computation
I manipulating diagrams graphically doesn’t change meaning
I any equality of circuits can be proven graphically!
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ZX axioms
The ZX calculus concerns two strongly complementary classical
structures and in a compact dagger category. Phases of integer
multiples of π/4 are allowed, satisfying the following:
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for all n = 1,2,3, . . ., as well as their colour-swapped versions.
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ZX rules

The Hadamard gate must be definable by:
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as well as the colour-swapped version.
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Soundness

Generators and relations give compact dagger subcategory of FHilb.
The formal symbols have a standard interpretation, written J−K.

I J K : C2 C2 ⊗ C2 copies the Z basis
I JHK =

(
1 1
1 −1

)
/
√

2 : C2 C2.

Any graphical manipulations done with ZX diagrams yield valid
equalities between matrices under the standard interpretation:

Theorem: Let D1,D2 be diagrams in the π
4 -ZX calculus. If D1 equals

D2 under the axioms of the ZX calculus, then JD1K = JD2K.
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Approximate universality

Any linear transformation from m qubits to n qubits can be
approximated up to arbitrary precision with ZX diagrams:

Theorem: For any morphism C2 ⊗ · · · ⊗C2 f C2 ⊗ · · · ⊗C2 in FHilb,
and any error margin ε > 0, there exists a diagram D in the ZX
calculus, that only includes phases that are integer multiples of π

4 ,
such that ‖JDK− f‖ < ε.
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Completeness

Is the ZX calculus complete?
If two linear transformations are equal, and are both given by some
ZX calculus diagrams, is there always a graphical proof of this using
only the axioms of the ZX calculus?

The answer is no when we allow arbitrary phases φ ∈ [0,2π).
But if we restrict the angles, the answer is yes!
We can restrict to integer multiples of π, or to integer multiples of π

2 .
However, with these restrictions the ZX calculus is no longer
universal, as it might use phases that do not meet the restriction.
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π
4 -ZX additional rules
To get completeness for phases that are multiples of π

4 ,
we need to add the following further two axioms:
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for any phases ϕ,ψ, θ that are multiples of π
4 .
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Completeness

Theorem: Let D1,D2 be diagrams in the π
4 -ZX calculus. If

JD1K = JD2K, then D1 = D2 under the axioms of the π
4 -ZX calculus.
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