
Categories and Quantum Informatics
Week 1: Introduction, Categories

Chris Heunen

1 / 38

Practicalities

http://www.inf.ed.ac.uk/teaching/courses/cqi

I Lectures: Tuesdays and Thursdays 2-3pm
I Guest lectures:

I Andru Gheorghiu: January 23

I Pau Enrique Moliner: March 6

I Martti Karvonen: March 20

I No lectures: January 25, March 8, March 22.
I Tutorials: Thursday 12-1pm or Friday 2-3pm, weeks 3-9

I Experimental:

2 / 38

Lab
Wednesday March 14 (week 8) 10-11am

3 / 38

Tests

I Tutorials (0%): exercise sheets
I Coursework (30%): week 4
I Written exam (70%): April-May diet

4 / 38

Lecture notes

I Lecture notes on website
I Stripped down version of book
I Please report mistakes and typos

5 / 38

Semantics

Are these two programs the same?

P = (if 1 = 1 then F else F)

Q = (if 1 = 1 then F else G)

I Different syntax
I Different operationally
I But denote same algorithm JPK = JQK = JFK

6 / 38

Semantics

Are these two programs the same?

P = (if 1 = 1 then F else F)

Q = (if 1 = 1 then F else G)

I Different syntax
I Different operationally
I But denote same algorithm JPK = JQK = JFK

6 / 38

Denotational semantics

programs mathematical objects
J−K

F

G •
•

I Operational: remember implementation details (efficiency)
I Denotational: see what program does conceptually (correctness)

Motivation:
I Ground programmer’s unspoken intuitions
I Justify/refute/suggest program transformations
I Understand programming through mathematics

7 / 38

Denotational semantics

programs mathematical objects
J−K

F

G •
•

F; G
•

I Operational: remember implementation details (efficiency)
I Denotational: see what program does conceptually (correctness)

Motivation:
I Ground programmer’s unspoken intuitions
I Justify/refute/suggest program transformations
I Understand programming through mathematics

7 / 38

Denotational semantics

programs mathematical objects
J−K

F

G •
•

F; G
•

I Operational: remember implementation details (efficiency)
I Denotational: see what program does conceptually (correctness)

Motivation:
I Ground programmer’s unspoken intuitions
I Justify/refute/suggest program transformations
I Understand programming through mathematics

7 / 38

Denotational semantics

programs mathematical objects
J−K

F

G •
•

F; G
•

I Operational: remember implementation details (efficiency)
I Denotational: see what program does conceptually (correctness)

Motivation:
I Ground programmer’s unspoken intuitions
I Justify/refute/suggest program transformations
I Understand programming through mathematics

7 / 38

Quantum technology

8 / 38

9 / 38

10 / 38

11 / 38

12 / 38

13 / 38

14 / 38

15 / 38

Programming quantum computers

I What if P,Q executables instead of source code? Black box.
But can still analyse information flow

I Empirical method: know how quantum theory works, but why?
I Cannot copy or delete, how to handle recursion?

I Investigate semantics to design good programming language
I “Semantics = programming language”

16 / 38

Programming quantum computers

I What if P,Q executables instead of source code? Black box.
But can still analyse information flow

I Empirical method: know how quantum theory works, but why?
I Cannot copy or delete, how to handle recursion?

I Investigate semantics to design good programming language
I “Semantics = programming language”

16 / 38

17 / 38

Need for abstraction
8-bit adder, dimension ∼ 21764

18 / 38

?

19 / 38

?

19 / 38

?

19 / 38

?

19 / 38

Categorical semantics

Want:
I Compositionality: JF; GK = JGK ◦ JFK
I Concurrency: JF while GK = JFK⊗ JGK
I Recursion: JF(X)K = JFK(JXK)

Where can JFK live?
I λ-calculus
I partially ordered sets
I categories

Instantiate in different categories:
I Isolate differences between quantum and classical behaviour
I Apply quantum thinking to other settings

20 / 38

Categorical semantics

Want:
I Compositionality: JF; GK = JGK ◦ JFK
I Concurrency: JF while GK = JFK⊗ JGK
I Recursion: JF(X)K = JFK(JXK)

Where can JFK live?
I λ-calculus
I partially ordered sets
I categories

Instantiate in different categories:
I Isolate differences between quantum and classical behaviour
I Apply quantum thinking to other settings

20 / 38

Categorical semantics

Want:
I Compositionality: JF; GK = JGK ◦ JFK
I Concurrency: JF while GK = JFK⊗ JGK
I Recursion: JF(X)K = JFK(JXK)

Where can JFK live?
I λ-calculus
I partially ordered sets
I categories

Instantiate in different categories:
I Isolate differences between quantum and classical behaviour
I Apply quantum thinking to other settings

20 / 38

Categories

Category theory is a way of thinking more than deep theorems

“The essential virtue of category theory is as a discipline for
making definitions, the programmers main task in life.”

– D. E. Rydeheard

“Good general theory does not search for the maximum
generality, but for the right generality.”

– S. Mac Lane

21 / 38

Monoidal categories
Added benefit: graphical calculus

Correctness proof:

vs

22 / 38

Categories

Categories consist of
I objects A,B,C, . . .
I morphisms A f B going between objects

Examples:
I physical systems, physical processes governing them
I data types, algorithms manipulating them
I algebraic/geometric structures, structure-preserving functions
I logical propositions, implications between them

Ignore all structure of objects, focus relationships between objects
“Morphisms are more important than objects”

23 / 38

Categories

Categories consist of
I objects A,B,C, . . .
I morphisms A f B going between objects

Examples:
I physical systems, physical processes governing them
I data types, algorithms manipulating them
I algebraic/geometric structures, structure-preserving functions
I logical propositions, implications between them

Ignore all structure of objects, focus relationships between objects
“Morphisms are more important than objects”

23 / 38

Categories

Categories consist of
I objects A,B,C, . . .
I morphisms A f B going between objects

Examples:
I physical systems, physical processes governing them
I data types, algorithms manipulating them
I algebraic/geometric structures, structure-preserving functions
I logical propositions, implications between them

Ignore all structure of objects, focus relationships between objects
“Morphisms are more important than objects”

23 / 38

Categories

A category C consists of the following data:
I a collection Ob(C) of objects
I for every pair of objects A and B, a collection C(A,B) of

morphisms, with f ∈ C(A,B) written A f B
I for all morphisms A f B and B g C a composite A g◦f C
I for every object A an identity morphism A idA A

such that:
I associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f
I identity: idB ◦ f = f = f ◦ idA

24 / 38

Sets and functions

The category Set of sets and functions:
I objects are sets A,B,C, . . .
I morphisms are functions f , g, h, . . .
I composition of A f B and B g C is the function g ◦ f : a 7→ g(f(a))
I the identity morphism on A is the function idA : a 7→ a

Think of a function A f B dynamically, as indicating how elements of
A can evolve into elements of B

A B
f

25 / 38

Sets and functions

The category Set of sets and functions:
I objects are sets A,B,C, . . .
I morphisms are functions f , g, h, . . .
I composition of A f B and B g C is the function g ◦ f : a 7→ g(f(a))
I the identity morphism on A is the function idA : a 7→ a

Think of a function A f B dynamically, as indicating how elements of
A can evolve into elements of B

A B
f

25 / 38

Relations

Given sets A and B, a relation A R B is a subset R ⊆ A× B.

A B
R

Nondeterministic: an element of A can relate to more than one
element of B, or to none.

26 / 38

Composition of relations
Suppose we have a pair of head-to-tail relations:

A B B C
R S

Then our interpretation gives a natural notion of composition:

A C
S ◦ R

27 / 38

Composition of relations
Suppose we have a pair of head-to-tail relations:

A B B C
R S

Then our interpretation gives a natural notion of composition:

A C
S ◦ R

27 / 38

Relations as matrices

We can write relations as (0,1)-valued matrices:

A B
R

!

0 0 0 0
0 1 1 1
0 0 0 1



Composition of relations is then ordinary matrix multiplication, with
logical disjunction (OR) and conjunction (AND) for + and ×.

28 / 38

Sets and relations

The category Rel of sets and relations:
I objects are sets A,B,C, . . .;
I morphisms are relations R ⊆ A× B, with (a, b) ∈ R written aRb;
I composition A R B S C is {(a, c) ∈ A× C | ∃b ∈ B : aRb, bSc};
I the identity morphism on A is {(a, a) ∈ A× A | a ∈ A}.

It seems like Rel should be a lot like Set,
but we will discover it behaves a lot more like Hilb.

While Set is a setting for classical physics,
and Hilb is a setting for quantum physics,
Rel is somewhere in the middle.

29 / 38

Sets and relations

The category Rel of sets and relations:
I objects are sets A,B,C, . . .;
I morphisms are relations R ⊆ A× B, with (a, b) ∈ R written aRb;
I composition A R B S C is {(a, c) ∈ A× C | ∃b ∈ B : aRb, bSc};
I the identity morphism on A is {(a, a) ∈ A× A | a ∈ A}.

It seems like Rel should be a lot like Set,
but we will discover it behaves a lot more like Hilb.

While Set is a setting for classical physics,
and Hilb is a setting for quantum physics,
Rel is somewhere in the middle.

29 / 38

Diagrams

Helps to draw diagrams, indicating how morphisms compose

A B C

D E

f g

h i
j

k

Diagram commutes if every path from object to another is equal

Two ways to speak about equality of composite morphisms:
algebraic equations, and commuting diagrams.

30 / 38

Terminology

For morphism A f B
I A is its domain
I B is its codomain
I f is endomorphism if A = B
I f is isomorphism if f−1 ◦ f = idA, f ◦ f−1 = idB for some B f−1

A
I A and B are isomorphic (A ' B) if there is isomorphism A B

If a morphism has an inverse, it is unique:

g = g ◦ id = g ◦ (f ◦ g′) = (g ◦ f) ◦ g′ = id ◦ g′ = g′

A groupoid is a category where every morphism is an isomorphism

31 / 38

Terminology

For morphism A f B
I A is its domain
I B is its codomain
I f is endomorphism if A = B
I f is isomorphism if f−1 ◦ f = idA, f ◦ f−1 = idB for some B f−1

A
I A and B are isomorphic (A ' B) if there is isomorphism A B

If a morphism has an inverse, it is unique:

g = g ◦ id = g ◦ (f ◦ g′) = (g ◦ f) ◦ g′ = id ◦ g′ = g′

A groupoid is a category where every morphism is an isomorphism

31 / 38

Terminology

For morphism A f B
I A is its domain
I B is its codomain
I f is endomorphism if A = B
I f is isomorphism if f−1 ◦ f = idA, f ◦ f−1 = idB for some B f−1

A
I A and B are isomorphic (A ' B) if there is isomorphism A B

If a morphism has an inverse, it is unique:

g = g ◦ id = g ◦ (f ◦ g′) = (g ◦ f) ◦ g′ = id ◦ g′ = g′

A groupoid is a category where every morphism is an isomorphism

31 / 38

Graphical notation

Draw object A as:

A

It’s just a line. Think of it as a picture of the identity morphism
A idA A. Remember: morphisms are more important than objects.

Draw morphism A
f−→ B as:

B

A

f

32 / 38

Graphical notation

Draw object A as:

A

It’s just a line. Think of it as a picture of the identity morphism
A idA A. Remember: morphisms are more important than objects.

Draw morphism A
f−→ B as:

B

A

f

32 / 38

Graphical notation

Draw composition of A
f−→ B and B

g−→ C as:

C

A

B

f

g

33 / 38

Graphical notation

Identity law and associativity law become:

A

A

B

f

idA

=

A

B

f =

A

B

B

f

idB

f

g

h

D

C

A

B

 


=

f

g

h

D

C

A

B

 



This one-dimensional representation is familiar; we usually draw it
horizontally, and call it algebra. The graphical calculus ‘absorbs’ the
axioms of a category.

34 / 38

Graphical notation

Identity law and associativity law become:

A

A

B

f

idA

=

A

B

f =

A

B

B

f

idB

f

g

h

D

C

A

B

 


=

f

g

h

D

C

A

B

 



This one-dimensional representation is familiar; we usually draw it
horizontally, and call it algebra. The graphical calculus ‘absorbs’ the
axioms of a category.

34 / 38

Functors
Morphisms are more important than objects: what about categories
themselves? Given categories C and D, a functor F : C D is:

I for each object A ∈ Ob(C), an object F(A) ∈ Ob(D)

I for each morphism A f B in C, a morphism F(A) F(f) F(B) in D

such that structure is preserved:
I F(g ◦ f) = F(g) ◦ F(f) for morphisms A f B g C in C
I F(idA) = idF(A) for objects A in C

It is:
I full when f 7→ F(f) are surjections C(A,B) D(F(A), F(B))
I faithful when f 7→ F(f) are injections C(A,B) D(F(A), F(B))
I essentially surjective on objects each B ∈ Ob(D) is isomorphic to

F(A) for some A ∈ Ob(C)
I equivalence when full, faithful, essentially surjective on objects

35 / 38

Functors
Morphisms are more important than objects: what about categories
themselves? Given categories C and D, a functor F : C D is:

I for each object A ∈ Ob(C), an object F(A) ∈ Ob(D)

I for each morphism A f B in C, a morphism F(A) F(f) F(B) in D

such that structure is preserved:
I F(g ◦ f) = F(g) ◦ F(f) for morphisms A f B g C in C
I F(idA) = idF(A) for objects A in C

It is:
I full when f 7→ F(f) are surjections C(A,B) D(F(A), F(B))
I faithful when f 7→ F(f) are injections C(A,B) D(F(A), F(B))
I essentially surjective on objects each B ∈ Ob(D) is isomorphic to

F(A) for some A ∈ Ob(C)
I equivalence when full, faithful, essentially surjective on objects

35 / 38

Natural transformations
Given functors F,G : C D, a natural transformation ζ : F G
assigns to every object A in C of a morphism F(A) ζA G(A) in D,
such that for every morphism A f B in C:

F(A) G(A)

F(B) G(B)

ζA

F(f) G(f)

ζB

If every component ζA is an isomorphism then ζ is called a natural
isomorphism, and F and G are said to be naturally isomorphic.

A functor F : C D is an equivalence if and only if there is a functor
G : D C and natural isomorphisms G ◦ F ' idC and F ◦ G ' idD.

36 / 38

Natural transformations
Given functors F,G : C D, a natural transformation ζ : F G
assigns to every object A in C of a morphism F(A) ζA G(A) in D,
such that for every morphism A f B in C:

F(A) G(A)

F(B) G(B)

ζA

F(f) G(f)

ζB

If every component ζA is an isomorphism then ζ is called a natural
isomorphism, and F and G are said to be naturally isomorphic.

A functor F : C D is an equivalence if and only if there is a functor
G : D C and natural isomorphisms G ◦ F ' idC and F ◦ G ' idD.

36 / 38

Products

Given objects A and B, a product is:
I an object A× B
I morphisms A× B pA A and A× B pB B

such that any two morphisms X f A and X g B allow a unique
morphism

(
f
g

)
: X A× B with pA ◦

(
f
g

)
= f and pB ◦

(
f
g

)
= g

X

A A× B B

f g(f
g
)

pA pB

Universal property: A× B is universal way to put A and B together

37 / 38

Summary

I Denotational semantics: structure behind computation
I Categories: objects and (more importantly) morphisms
I Examples: sets and functions, sets and relations
I Isomorphic objects: behave the same
I Functors: ‘morphisms between categories’
I Equivalent categories: behave the same
I Products: combine objects universally

38 / 38

