Categories and Quantum Informatics exercise sheet 1 answers: Categorical semantics

Exercise 0.1. Composition arises from transitivity: if $x \le y$ and $y \le z$ then $x \le z$. This is automatically associative. Identities arise from reflexivity: $x \le x$. (We don't actually need anti-symmetry, pre-orders also induce categories this way.)

Exercise 0.2. Associativity of the composition of the category is precisely associativity of the monoid multiplication.

Note: pre-orders and monoids are two 'extreme' types of categories. Pre-orders have lots of objects and as few morphisms as possible. Monoids have as few objects as possible and lots of morphisms. In a sense any category is a mixture of these two extremes.

Exercise 0.3. Concatenating paths is associative. Identities arise from paths $v \rightarrow v$ of length 0.

- **Exercise 0.4.** (a) A functor $P \rightarrow Q$ by definition consists of a function $f: P \rightarrow Q$ (on objects) that maps morphisms to morphisms. This means precisely that if $x \leq y$ is a morphism in P, then there must be a morphism $f(x) \leq f(y)$ in Q.
 - (b) A functor $M \to N$ by definition consists of a function $\{*\} \to \{*\}$ (on objects), and a function $f: M \to N$ (on morphisms). The latter has to preserve composition (f(mn) = f(m)f(n)) and identities (f(1) = 1).
 - (c) Functors $G \to H$ by definition consist of a function $f: \operatorname{Vertices}(G) \to \operatorname{Vertices}(H)$ (on objects), and a function $g: \operatorname{Edges}(G) \to \operatorname{Paths}(H)$. The latter induces a function $\operatorname{Paths}(G) \to \operatorname{Paths}(H)$ that respects associativity of composition and identities by definition of composition and identities in the category G.
- **Exercise 0.5.** (a) Composition of monotone functions is monotone, and the identity is a monotone function.
 - (b) Composition of homomorphisms is a homomorphism, and the identity is a homomorphism.
- **Exercise 0.6.** (a) Isomorphisms are clearly bijections. Conversely, suppose $f: A \to B$ is a bijection. Then there exists a function $f^{-1}: B \to A$ with $f(f^{-1}(b)) = b$ and $f(f^{-1}(a)) = a$. So f is an isomorphism.
 - (b) Isomorphisms are clearly bijective morphisms. Conversely, suppose $f: M \to N$ is a bijective morphism. Then there exists a function $f^{-1}: N \to M$ that inverts it. We have to show that f^{-1} is a homomorphism. Clearly $f^{-1}(1) = f^{-1}(f(f^{-1}(1))) = f^{-1}(f(1)) = 1$. Similarly $f^{-1}(xy) = f^{-1}(f(f^{-1}(x))f(f^{-1}(y))) = f^{-1}(f(f^{-1}(x))f^{-1}(y)) = f^{-1}(x)f^{-1}(y)$.
 - (c) Let P be the partially ordered set $\{0, 1\}$ where 0 and 1 are incomparable: $0 \leq_P 1$ nor $1 \leq_P 0$. Let Q be the set $\{0, 1\}$ partially ordered by $0 \leq_Q 1$ (but not $1 \leq_Q 0$). Let $f: P \rightarrow Q$ be the function f(0) = 0 and f(1) = 1. Then f is bijective and monotone. Its inverse would have to be the set-theoretic function $Q \rightarrow P$ given by $0 \mapsto 0$ and $1 \mapsto 1$, but that function is not monotone.
- **Exercise 0.7.** (a) True: the functor that sends a set A to itself, and a relation $R \subseteq A \times B$ to $\{(b,a) \mid (a,b) \in R\} \subseteq B \times A$, is its own inverse.
 - (b) False: if there were an isomorphism, then $\mathbf{Set}(A, B) \simeq \mathbf{Set}(B, A)$ for any sets A, B. But for e.g.

 $A = \{*\}$ and $B = \{0, 1\}$ these two (hom)sets have different cardinality.

- (c) True: the assignment on objects that sends $U \in P(X)$ to its complement $X \setminus U \in P(X)$ is functorial, and its own inverse.
- **Exercise 0.8.** (a) A product of x and y is by definition an object $x \wedge y$ such that $x \ge x \wedge y \le y$. It has to satisfy the universal property: if there is another object z with $x \ge z \le y$, then there is a (unique) morphism $z \le x \wedge y$.
 - (b) Reverse all the inequality signs.

Exercise 0.9. The universal property of $A \times B$ provides a morphism that we'll call $id_A \times p_B$:

The universal property of $(A \times B) \times C$ now provides a morphism $f \colon A \times (B \times C) \to (A \times B) \times C$:

Similarly we find a morphism $g: (A \times B) \times C \to A \times (B \times C)$.

Now $p_A \circ (g \circ f) = p_A \circ id_{A \times (B \times C)}$ and $p_{B \times C} \circ (g \circ f) = p_{B \times C} \circ id_{A \times (B \times C)}$. But the universal property of $A \times (B \times C)$ says there is only one morphisms that can satisfy this, so we must have $g \circ f = id$. Similarly $f \circ q = id$.