Categories and Quantum Informatics exercise sheet 1 answers:
Categorical semantics

Exercise 0.1. Composition arises from transitivity: if x < y and y < z then z < 2. This is automatically
associative. Identities arise from reflexivity: = < z. (We don’t actually need anti-symmetry, pre-orders also
induce categories this way.)

Exercise 0.2. Associativity of the composition of the category is precisely associativity of the monoid mul-
tiplication.

Note: pre-orders and monoids are two ‘extreme’ types of categories. Pre-orders have lots of objects and as
few morphisms as possible. Monoids have as few objects as possible and lots of morphisms. In a sense any
category is a mixture of these two extremes.

Exercise 0.3. Concatenating paths is associative. Identities arise from paths v — v of length 0.

Exercise 0.4. (a) A functor P— @ by definition consists of a function f: P— @ (on objects) that maps
morphisms to morphisms. This means precisely that if x < y is a morphism in P, then there must be
a morphism f(z) < f(y) in Q.
(b) A functor M — N by definition consists of a function {*} — {*} (on objects), and a function
f+ M—N (on morphisms). The latter has to preserve composition (f(mn) = f(m)f(n)) and identities
(f(1) =1).
(c) Functors G — H by definition consist of a function f: Vertices(G)— Vertices(H) (on objects), and a
function g: Edges(G) — Paths(H). The latter induces a function Paths(G)— Paths(H) that respects
associativity of composition and identities by definition of composition and identities in the category

G.

Exercise 0.5.  (a) Composition of monotone functions is monotone, and the identity is a monotone
function.

(b) Composition of homomorphisms is a homomorphism, and the identity is a homomorphism.

Exercise 0.6. (a) Isomorphisms are clearly bijections. Conversely, suppose f: A— B is a bijection. Then
there exists a function f=1: B— A with f(f~1(b)) = b and f(f~!(a)) = a. So f is an isomorphism.

(b) Isomorphisms are clearly bijective morphisms. Conversely, suppose f: M — N is a bijective
morphism. Then there exists a function f~!': N — M that inverts it. We have to show that f~!
is a homomorphism. Clearly f~1(1) = f~1(f(f~*(1))) = f~1(f(1)) = 1. Similarly f~'(ay) =
FEGH @) = U H @) W) = fH @) f~H ).

(c) Let P be the partially ordered set {0,1} where 0 and 1 are incomparable: 0 £p 1 nor 1 £p 0. Let @
be the set {0, 1} partially ordered by 0 <¢g 1 (but not 1 <g 0). Let f: P—Q be the function f(0) =0
and f(1) = 1. Then f is bijective and monotone. Its inverse would have to be the set-theoretic
function @Q — P given by 0 — 0 and 1 — 1, but that function is not monotone.

Exercise 0.7.  (a) True: the functor that sends a set A to itself, and a relation R C A x B to
{(b,a) | (a,b) € R} C B x A, is its own inverse.
(b) False: if there were an isomorphism, then Set(A, B) ~ Set(B, A) for any sets A, B. But for e.g.



A= {x} and B = {0,1} these two (hom)sets have different cardinality.

(¢) True: the assignment on objects that sends U € P(X) to its complement X \ U € P(X) is functorial,
and its own inverse.

Exercise 0.8. (a) A product of x and y is by definition an object A y such that z > z Ay < y. It has
to satisfy the universal property: if there is another object z with « > z <y, then there is a (unique)
morphism z < z A y.

(b) Reverse all the inequality signs.

Exercise 0.9. The universal property of A x B provides a morphism that we’ll call id4 X pg:
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The universal property of (A x B) x C' now provides a morphism f: A x (Bx C)— (A x B) x C:
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Similarly we find a morphism g: (A x B) x C— A x (B x C).

Now pao(go f) =pacidaxsxc) and ppxc o (go f) = pxc ©idax(Bxc). But the universal property of
A x (B x C) says there is only one morphisms that can satisfy this, so we must have g o f = id. Similarly
fog=id.



