
Computer Programming: Skills & Concepts
(INF-1-CP1)

Practical Programming

11th October, 2010

CP1–9 – slide 1 – 11th October, 2010

Summary of Lecture 8

I for and while statements

I programs for Fibonacci and prime numbers

CP1–9 – slide 2 – 11th October, 2010

This Lecture

I Practical demonstration of writing a program

I basic debugging with printf

I scanf and erroneous input (!)

CP1–9 – slide 3 – 11th October, 2010

The Task

(From an exam question.) Using the Descartes package, write a program
which takes three points from the user, draws the resulting triangle,
computes the centroid of the triangle and draws rays from the centroid to
each vertex.

(The centroid of a polygon is the average of its vertices – i.e. take the
average of the x-coordinates and the average of the y -coordinates.)

CP1–9 – slide 4 – 11th October, 2010

First Step

Stop!

Think!

CP1–9 – slide 5 – 11th October, 2010

Plan

I Set up Makefile and skeleton program – copy and modify existing;

I develop program incrementally;

I at each stage, insert debugging information;

I at each stage, test.

CP1–9 – slide 6 – 11th October, 2010

Setting Up

Writing a Makefile from scratch is rather rare. And you need to understand
how they work . . .
You can go a long way by copying and tweaking.
So we’ll copy the Makefile (and Descartes package) from the previous
lectures.
Then edit in “the obvious way” for a program called triangle.

CP1–9 – slide 7 – 11th October, 2010

Skeleton Program

As usual . . .

CP1–9 – slide 8 – 11th October, 2010

And on with the job

CP1–9 – slide 9 – 11th October, 2010

Tips to remember

If you don’t understand what your program is doing, add printfs and
trace what’s happening to your variables.
(Advanced: use a debugger – but they have a steep learning curve.)
Edit–compile–run should be thought of as
edit–compile–test.
To detect uninitialized variables, add -O1 to the C flags along with -Wall.

CP1–9 – slide 10 – 11th October, 2010

scanf - erroneous input

This bit not relevant for Practical 1
. . .
EXCEPT for Part A

CP1–9 – slide 11 – 11th October, 2010

scanf - erroneous input

What if the user types a word, when an integer is required?

Apart from the action performed by scanf (reading, or
attempting to read, the object of the specified type), scan
returns an integer, which is the number of input items assigned.
This may be fewer than provided for, or even zero, in the event
of a matching failure.

This returned value can be used to test for a successful read:

scanf("%d", &a) == 1;

if and only if an integer was successfully read into a.

CP1–9 – slide 12 – 11th October, 2010

scanf - error-checking our input

Suppose we want to read in an integer to x:
We can test for success by saving the returned value of scanf:

read succ = scanf("%d", &x);
if (read succ == 1) {
....

}
else {
....

}

What about the else branch?

I Print an error message and terminate?

I Can give the user a second try.

CP1–9 – slide 13 – 11th October, 2010

scanf error-checking - first attempt

printf("Please input an integer: ");

read succ = scanf("%d", &x);

if (read succ == 1) {
....

}
else { /* read succ must have been 0 */

printf("That wasn’t an integer! Try again: ");

read succ = scanf("%d", &x);

....

}

PROBLEM: Guaranteed to fail . . .
WHY?

CP1–9 – slide 14 – 11th October, 2010

scanf error-checking - “skipping over”

scanf("%*s"); - means “skip over” first item in read-buffer from standard
input (the s is for ‘string’, the * for ‘don’t save’).

printf("Please input an integer: ");

read succ = scanf("%d", &x);

if (read succ == 1) {
....

}
else { /* read succ must have been 0 */

scanf("%*s"); /* scan the bad-input, don’t save */

printf("That wasn’t an integer! Try again: ");

read succ = scanf("%d", &x);

....

}

CP1–9 – slide 15 – 11th October, 2010

scanf error-checking - loops

printf("Please input an integer: ");

read succ = scanf("%d", &x);

if (read succ != 1) { /* read succ must have been 0 */

while (read succ != 1) {
scanf("%*s"); /* scan bad-input, don’t try to save */

printf("That wasn’t an integer! Try again: ");

read succ = scanf("%d", &x);

}
}
.... /* Now we definitely have an int; do the work */

}

Examples - with fibonacci.c, fibonacci1.c,
fibonacci2.c, fibonacci3.c,

CP1–9 – slide 16 – 11th October, 2010

