
Computer Programming: Skills & Concepts
(INF-1-CP1)

Variables; scanf; Conditional Execution

30th September, 2010

CP1–5 – slide 1 – 30th September, 2010

Tutorials

I Start next week.

I Tutorial groups can be viewed from the appropriate webpage:
https://www.inf.ed.ac.uk/admin/itodb/mgroups/stus/cp1.html

I Contact the ITO if your tutorial group clashes with another lecture,
or if you have not been assigned to any group (and are officially
registered for CP1).

CP1–5 – slide 2 – 30th September, 2010

Summary of Lecture 4

I Integer arithmetic in C.

I Converting pre-decimal money to decimal.

I The int type and its operators.

I Numeric variables.

CP1–5 – slide 3 – 30th September, 2010

Today’s lecture

I Assigning and Re-assigning variables;

I The if-statement.

I Fixing the lsd program.

I Input using scanf.

CP1–5 – slide 4 – 30th September, 2010

Reprise: Variables in C

Variables are “boxes” to store a value

I Bit like variables in mathematics (may have varying assignments);

I A C variable holds a single value;

I Have to define what type of item a variable will hold, eg:
int x; or maybe int x = 2;

I In C, the value can change over time as a result of program
statements which act on the variable, eg:
x = x + 1;

CP1–5 – slide 5 – 30th September, 2010

Reprise: Updating Variables

int n; <-- n is defined

n = 2 * n; <-- n is doubled (from what? ERROR)
n = 9; <-- n gets the value 9
n = n + 1; <-- n gets the value 9+1, ie 10
n = 22 * n + 1; <-- n gets the value ?
++n; <-- n gets the value ?
n++; <-- n gets the value ?

CP1–5 – slide 6 – 30th September, 2010

The Assignment Statement

A variable is updated by an assignment statement

n = 22 * n + 1;

The left-hand side n is the variable being updated.
The right-hand side 22 * n + 1 is an expression for the new value.
First compute the expression, then change the variable to the new value.

WARNING: C also allows assignments as expressions:

(n = 22 * n + 1)

is an expression which computes 22 * n + 1, sets n to the result, and
overall computes to the new value of n.
So you can write:

m = (n = 2*n) + 3;

DON’T do this! You may see assignment expressions, but they are never
necessary.
Main danger is doing it by accident!

CP1–5 – slide 7 – 30th September, 2010

The Assignment Statement

A variable is updated by an assignment statement

n = 22 * n + 1;

The left-hand side n is the variable being updated.
The right-hand side 22 * n + 1 is an expression for the new value.
First compute the expression, then change the variable to the new value.

WARNING: C also allows assignments as expressions:

(n = 22 * n + 1)

is an expression which computes 22 * n + 1, sets n to the result, and
overall computes to the new value of n.
So you can write:

m = (n = 2*n) + 3;

DON’T do this! You may see assignment expressions, but they are never
necessary.
Main danger is doing it by accident!

CP1–5 – slide 8 – 30th September, 2010

Shorthand Assignment Operators

C programmers are lazy! C provides shorthand for some very common
assignments, for example:

x += 7; // same as x = x + 7;
x *= 2; // same as x = x * 2;
x -= 3; // same as x = x - 3;
x /= 3; // same as x = x / 3;

Note that, e.g. x *= y + z; means x = x * (y + z);.

Use these only if you’re completely confident with them.

CP1–5 – slide 9 – 30th September, 2010

Shorthand Assignment Expressions

For even greater laziness, C provides some special assignment expressions.
Unlike general assignment expressions, these are very commonly used.

n++

is an expression which computes to the value of n, and afterwards
increases n by 1.

int n = 2, m = 3;

n++; // n is now 3.
m = n++; // m is now 3, n is now 4

CP1–5 – slide 10 – 30th September, 2010

Shorthand Assignment Expressions (2)

Similarly n-- computes to value of n and then decreases n by 1.
Much less often you will see ++n and --n:
first increase/decrease n by 1, and then compute to the new value of n.

Warning: Easy to get confused, and/or run into subtleties of C. Suggest
using these only in for-loops etc. (See later.)

CP1–5 – slide 11 – 30th September, 2010

if statement – basic form

if (〈condition〉) {
〈statement-sequence〉

}
else {

〈statement-sequence〉
}

I Allows two different strands of execution, depending on the result of
evaluating 〈condition〉.

I 〈condition〉 is any boolean expression.

I 〈statement-sequence〉 is any legal sequence of C statements.

I The else {... } is optional.

CP1–5 – slide 12 – 30th September, 2010

MAX of two integer variables

if (x > y) {
printf("MAX is %d: ", x);

} else {
printf("MAX is %d: ", y);

}

I (x > y) is the condition to be evaluated. It evaluates to True only
if x is larger than y.

I where did we get the values x and y?

CP1–5 – slide 13 – 30th September, 2010

Conditions on integers

C has the standard mathematical relations <, >, ==, <=, >=.
Remember that ‘is equal to’ == is a double equals sign!

Examples:

a < 0 // a is negative
a == 2*b
a + c >= b
x % 6 == 0 // x is a multiple of 6

CP1–5 – slide 14 – 30th September, 2010

Fixing the old money → new money calculation

We did (this year: should have done)

totaloldpence = oldpence + shillings * OLD_PENCE_PER_SHILLING;

newpence = (totaloldpence * NEW_PENCE_PER_POUND)

/ OLD_PENCE_PER_POUND;

Probably we don’t like the rounding:
2 old pence converts to (2 ∗ 100)/240 = 0 in integers.
But 2d is really 5

6p, so we should round to 1p.

Standard rounding is round 1
2 or greater up, less than 1

2 down.
We can add the lines

if ((totaloldpence * NEW_PENCE_PER_POUND) % OLD_PENCE_PER_POUND

>= (OLD_PENCE_PER_POUND/2)) {

newpence += 1;

}

Exercise: do the same without using if.

Harder exercise: what hidden assumption have I made above?

CP1–5 – slide 15 – 30th September, 2010

Fixing the printing of new pence

We did:

printf("is %d.%d in new money\n",pounds,newpence);

But this prints 4 pounds and 1 penny as 4.1, not 4.01. Fix:

printf(" is %d.");
if (newpence < 10) {

printf("0%d",newpence);
else {

printf("%d",newpence);
}
printf(" in new money\n");

Actually, there’s an easier way, with fancier features of printf.

printf("is %d.%02d is new money\n",pounds,newpence);

CP1–5 – slide 16 – 30th September, 2010

Fixing the printing of new pence

We did:

printf("is %d.%d in new money\n",pounds,newpence);

But this prints 4 pounds and 1 penny as 4.1, not 4.01. Fix:

printf(" is %d.");
if (newpence < 10) {

printf("0%d",newpence);
else {

printf("%d",newpence);
}
printf(" in new money\n");

Actually, there’s an easier way, with fancier features of printf.

printf("is %d.%02d is new money\n",pounds,newpence);

CP1–5 – slide 17 – 30th September, 2010

Input with scanf

scanf is the twin of printf. Reads numbers from input and stores them
in variables.

But scanf requires a “&” before its arguments.
(Explanation later in the course. . .)

For example:

int x;
scanf("%d", &x);
printf("%d", x);

CP1–5 – slide 18 – 30th September, 2010

max.c

#include <stdlib.h>
#include <stdio.h>

int main(void) {
int x, y;
printf("Input the two integers: ");
scanf("%d", &x);
scanf("%d", &y);
if (x > y) {

printf("MAX is %d: ", x);
} else {

printf("MAX is %d: ", y);
}
return EXIT_SUCCESS;

}

CP1–5 – slide 19 – 30th September, 2010

