
Computer Programming: Skills & Concepts (CP1)
Redoing coin change; Booleans; Expressions and

Precedence

11th November, 2010

CP1–23 – slide 1 – 11th November, 2010

Coin Change

Remember the task:
We want to write a program that

I ask the user for an amount of money

I calculates the coins needed for this amount

I outputs the number of each coin

Recall that solution was very ugly – different constants for each coin type,
multi-branch conditionals, and so on. Moreover, the coin values were
hard-wired – suppose we wanted US coins!
This was because we didn’t know about arrays.
So here is Coin Change done as we would now do it:

CP1–23 – slide 2 – 11th November, 2010

Type of Coins

Coins range from 1p to £2

/* array of coin values in decreasing order */
const int coinValues[] = { 200, 100, 50, 20, 10, 5, 2, 1 };

/* number of different types of coin -
using a sneaky way to avoid counting them */

const int NUM_VALUES = sizeof(coinValues)/sizeof(int);

/* names for the coins */
const char *coinNames[]= { "two pound", "one pound",

"50p", "20p", "10p", "5p", "2p", "1p" };

CP1–23 – slide 3 – 11th November, 2010

Function structure of Program

type definitions as just given

the ReadInput function as before

int CalculateCoins(int amount, int len,
const int cValues[],
int cNums[]) {

calculate numbers of coins, store in cNums
}

int PrintAmount(int amount, int len,
const int cNames[],
const int cNums[]) {

print out the amount
}

CP1–23 – slide 4 – 11th November, 2010

Missing out the error handling (do it as before):

int main(void) {
int amount;
int coinNums[NUM_VALUES];

ReadInput(&amount);
CalculateCoins(amount, NUM_VALUES, coinValues,

coinNums);
PrintAmount(amount, NUM_VALUES, coinNames,

coinNums);

return EXIT_SUCCESS;
}

CP1–23 – slide 5 – 11th November, 2010

Calculate Coins

int CalculateCoins(int amount, int len,

const int cValues[],

int cNums[]) {

int pot = amount; // Amount left to deal with

int i = 0;

while (pot > 0 && i < len) {

int n = pot / cValues[i];

pot -= n * cValues[i];

cNums[i] = n;

i++;

}

return EXIT_SUCCESS;

}

CP1–23 – slide 6 – 11th November, 2010

Output to User

int PrintAmount(int amount, int len,
const char *cNames[],
const int cNums[]) {

printf("%dp may be returned using the following "
"combination of coins:\n", amount);

int i;
for (i=0; i<len; i++) {

if (cNums[i] > 0) {
printf("%d %s coins\n", cNums[i], cNames[i]);

}
}
return EXIT_SUCCESS;

}

CP1–23 – slide 7 – 11th November, 2010

Exercises

(1) It’s rather ugly that we have separate arrays for coin values and names
– suppose we get them out of sync!
Define a type struct coin { int value; char *name; } and re-
write the program that way.

(2) Handle the punctation between lines of output, and the use of plurals
(‘coin’/‘coins’) correctly. (This is tedious!)

CP1–23 – slide 8 – 11th November, 2010

Booleans

&& (“and”):

I usage is d && s, for d,s booleans.

I meaning is like ‘and’ in English, eg, “it is dry and it is sunny”.

|| (“or”):

I usage is t || s, for t,s booleans.

I meaning is like ‘or’ in English, eg “Tesco or Scotmid will be open”.

I NOT exclusive or: t || s also holds if both t and s hold.

! (“not”):

I !p is true if and only p is false.

CP1–23 – slide 9 – 11th November, 2010

Examples

char c=’F’;
const int false=0; true=1;

(1 < 9) || (2 == 5)

IsSunny(today) || true

(’A’ <= c) && (c <= ’Z’)

false && (1 == 1)

CP1–23 – slide 10 – 11th November, 2010

Boolean as int

I Booleans are represented as integers in C.

I 1 is the value of a true expression:
(x == x) is 1

I 0 is the value of a false expression:
x < x is 0

I Non-zero values are treated as true:
while(45){ };

/* loop forever */

CP1–23 – slide 11 – 11th November, 2010

Truth Table

expr1 expr2 !expr1 expr1 && expr2 expr1 || expr2

false false true false false

false true true false true

true false false false true

true true false true true

CP1–23 – slide 12 – 11th November, 2010

Truth Table (as int)

expr1 expr2 !expr1 expr1 && expr2 expr1 || expr2

0 0 1 0 0

0 non-zero 1 0 1

non-zero 0 0 0 1

non-zero non-zero 0 1 1

CP1–23 – slide 13 – 11th November, 2010

“short-circuit” to testing

&& and || expressions are evaluated in order:

I eg, first && second

I Arithmetic expressions DO NOT have this property

For Boolean expressions, evaluation ends as soon as the outcome is
known:

I eg false && never

I eg (x == x) || never

CP1–23 – slide 14 – 11th November, 2010

Testing elements of an array

int CheckRange(int max, int *array, int length) {
int i = 0;
while (i < length) {
if (array[i] > max)
break;

i++;
}
if (i < length) /* We broke out of the loop early */
return 0;

else return 1;
}

CP1–23 – slide 15 – 11th November, 2010

Testing elements ... “short-circuit” version

int CheckRange2(int max, int *array, int length) {
int i = 0;
while ((i < length) && (array[i] <= max)) {
i++;

}
if (i < length) /* We broke out of the loop early */
return 0;

else return 1;
}

CP1–23 – slide 16 – 11th November, 2010

Watch out!

Don’t assume that arithmetic expressions will evaluate in order. For
example:

x = 10;
y = ++x + x;

In practice, depending on compiler, this could evaluate as either of the
following:

y = 11 + 11; /* ++x; y = x + x; */

y = 11 + 10; /* y = x; ++x; y += x; */

Avoid writing code with these ambiguous interpretations.

CP1–23 – slide 17 – 11th November, 2010

Precedence – highest to lowest

() [] ++ --
* / %
+ -
< <= > >=
== !=
&&
||
= += -= *= /= etc

Left to right ordering within same precedence level.
Precedence determines bracketing of expression.
Precedence does not determine order of evaluation.

CP1–23 – slide 18 – 11th November, 2010

Watch out . . .

The common mathematical short-hand 3 < j < 6
. . . is evaluated as (3 < j) < 6
Suppose j is 7. Then the sequence of evaluations is:

(3 < 7) < 5
= 1 < 5 /* 1 is the result (true) of 3 < 7 */
= 1 /* representing true */

Must be clear and write (3 < j) && (j < 6)

CP1–23 – slide 19 – 11th November, 2010

