
Computer Programming: Skills & Concepts (CP1)
Intro to Practical 3:

Travelling Salesman Problem

9th November 2010

CP1–22 – slide 1 – 9th November 2010



Travelling Salesman Problem (TSP)

A well-known theoretical and practical problem:

I a salesman has to visit a number of cities

I what is the shortest route to visit all cities and return home?

Properties of the problem:

I hard to solve for large number of cities

I instance of a NP-complete problem

CP1–22 – slide 2 – 9th November 2010



Complexity of problems

We have already encountered problems with different complexity:

I search through unsorted array: linear (ie, O(n))

I binary search through sorted array: log (ie, O(lg(n)))

I BubbleSort: O(n2)

I MergeSort: O(n lg(n))

CP1–22 – slide 3 – 9th November 2010



NP-complete?

I For some problems, no polynomial time solution is known — O(nc)
for some constant c . One class of these problems is called
NP-complete (NP = non-polynomial).

I There may be polynomial solutions, but nobody found them so far.

I If efficient solution of a problem is not possible, we resort to
heuristics that give us approximate solutions.

CP1–22 – slide 4 – 9th November 2010



Other NP-hard problems

I Knapsack problem: given a set of whole numbers a1, . . . , an, and an
upper bound K find a subset of the numbers whose sum is of
maximum value, subject to being no more than K .
eg, for 2, 4, 9, 11, 14 and K = 25, the subset is {2, 9, 14}

I Minesweeper: is a given configuration ”possible”?

CP1–22 – slide 5 – 9th November 2010



Example TSP: Romania

CP1–22 – slide 6 – 9th November 2010



Simplified: Euclidean TSP

All connections are straight lines. How do we find the shortest path?

CP1–22 – slide 7 – 9th November 2010



Greedy heuristic

I start at some point

I go to closest not visited city

CP1–22 – slide 8 – 9th November 2010



Greedy heuristic: result

CP1–22 – slide 9 – 9th November 2010



Improving the solution

I Swap neighboring cities, if it shortens path

CP1–22 – slide 10 – 9th November 2010



Swap 6,7

CP1–22 – slide 11 – 9th November 2010



Locally Optimal solution

CP1–22 – slide 12 – 9th November 2010



Other improvements?

⇒
What other improvements can be made?

CP1–22 – slide 13 – 9th November 2010



Practical 3

I Part A: capture positions of cities (from mouse clicks), and store
them all in an array. Write a function to compute the length of a
given tour.

I Part B: implement swap heuristic.

I Part C: implement 2-opt heuristic (more powerful).

I Part D: implement greedy heuristic.

I Part E: do better, with almost no extra work?

CP1–22 – slide 14 – 9th November 2010


