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Travelling Salesman Problem (TSP)

A well-known theoretical and practical problem:

I a salesman has to visit a number of cities

I what is the shortest route to visit all cities and return home?

Properties of the problem:

I hard to solve for large number of cities

I instance of a NP-complete problem
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Complexity of problems

We have already encountered problems with different complexity:

I search through unsorted array: linear (ie, O(n))

I binary search through sorted array: log (ie, O(lg(n)))

I BubbleSort: O(n2)

I MergeSort: O(n lg(n))
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NP-complete?

I For some problems, no polynomial time solution is known — O(nc)
for some constant c . One class of these problems is called
NP-complete (NP = non-polynomial).

I There may be polynomial solutions, but nobody found them so far.

I If efficient solution of a problem is not possible, we resort to
heuristics that give us approximate solutions.
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Other NP-hard problems

I Knapsack problem: given a set of whole numbers a1, . . . , an, and an
upper bound K find a subset of the numbers whose sum is of
maximum value, subject to being no more than K .
eg, for 2, 4, 9, 11, 14 and K = 25, the subset is {2, 9, 14}

I Minesweeper: is a given configuration ”possible”?
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Example TSP: Romania
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Simplified: Euclidean TSP

All connections are straight lines. How do we find the shortest path?
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Greedy heuristic

I start at some point

I go to closest not visited city
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Greedy heuristic: result
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Improving the solution

I Swap neighboring cities, if it shortens path
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Swap 6,7
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Locally Optimal solution
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Other improvements?

⇒
What other improvements can be made?
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Practical 3

I Part A: capture positions of cities (from mouse clicks), and store
them all in an array. Write a function to compute the length of a
given tour.

I Part B: implement swap heuristic.

I Part C: implement 2-opt heuristic (more powerful).

I Part D: implement greedy heuristic.

I Part E: do better, with almost no extra work?
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