
Computer Programming: Skills & Concepts (CP1)
Strings

8th November 2010

CP1–21 – slide 1 – 8th November 2010

Last lecture

Sorting with merge sort and bubble sort.

CP1–21 – slide 2 – 8th November 2010

Today’s lecture

I Strings.

I String I/O.

I String Comparison.

CP1–21 – slide 3 – 8th November 2010

Strings

A string is any 1-dimensional character array that is terminated by a null
character.

I Null is ’\0’.

I Strings are declared in function arguments either as char *s or
char s[].
eg, void foo(char *s) or void foo(char s[])

I In declaring a string, array length must be 1 greater than the longest
string it will hold, to allow for the null.
eg, char[11] can hold a 10-character string.

CP1–21 – slide 4 – 8th November 2010



The string library

I Need to include it at the start:
I #include <string.h>

I To copy a string s2 into s1:
I strcpy(s1,s2); strcpy(s1,"Hello\n");

I To add s2 onto the end of s1:
I strcat(s1,s2)

I Returns the length of s1:
I strlen(s1)

I Many others . . .

CP1–21 – slide 5 – 8th November 2010

The string library – types

char *strcpy(char *p1, const char *p2);
Actually returns the pointer p1 which at return time holds the value of
*p2.

char *strcat(char *p1, const char *p2)
similar

size_t strlen(const char *p1)
the return type will be unsigned int or similar.

WARNING: When using strcat or strcpy, it is your responsibility to
make sure p1 has enough space. E.g:

char a[5];
strcpy(a,"This string is too long");

will segfault, or worse, overwrite some other data.

CP1–21 – slide 6 – 8th November 2010

String I/O

(don’t need <string.h> for these)

I To printf a string: printf("%s", s1);
I To read in a string:

I scanf("%s", s1); /* ?why no & on s1? */

I To print a float a into a string s1:
I sprintf(s1,"hello, num=%f", a);
I sprintf returns an integer, being the number of chars written;
I make sure s1 has space.

I Similarly, we can read ints/floats etc; from a string via sscanf:
I int sscanf(s1, "%d Bellevue Road", &door);
I Value returned is the number of variables assigned to.

CP1–21 – slide 7 – 8th November 2010

What about <, <=, == etc on strings?

int main(void) {
char sone[] = "hiya";
char stwo[] = "cp";
char sthr[] = "coders";
if (sone <= stwo)

printf("’hiya’ is less than or equal to ’cp’.\n");
else

printf("’cp’ is less than ’hiya’.\n");
if (stwo <= sthr)

printf("’cp’ is less than or equal to ’coders’.\n");
else

printf("’coders’ is less than ’cp’.\n");
return EXIT_SUCCESS;

}

CP1–21 – slide 8 – 8th November 2010



<, <=, == don’t work for strings

(sone <= stwo)

I sone and stwo are pointers to char variables (ie, are addresses in
memory).

I comparison is true is and only if address in sone is less than stwo.

Output is unpredictable: compiler may allocate memory addresses for
variables

. . . in order of declaration in the program, or maybe

. . . combination of declaration order and string length, or maybe

. . . in reverse order of declaration in program, or even

. . . in lexicographic order of initialization string (if given).

CP1–21 – slide 9 – 8th November 2010

Better (non)-example for <=

char sone[12], stwo[12];
printf("Input 1 please: ");
scanf("%s", sone);
printf("/nInput 2 please: ");
scanf("%s", stwo);
if (sone <= stwo)

printf("%s is less than %s.\n", sone, stwo);
else

printf("%s is less than %s.\n", stwo, sone);

No initialization bias on memory-allocation.
Can swap roles of input 1 and 2 to see result of comparison is non-
lexicographic.

CP1–21 – slide 10 – 8th November 2010

strcmp

int strcmp(const char *s1, const char *s2);

returns 0 if s1 and s2 are equal,
a negative int if string s1 is lexicographically less than s2
a positive int if string s1 is lexicographically greater than s2

...
if (strcmp(sone, stwo) <= 0)

printf("’hiya’ is less than or equal to ’cp’.\n");
else

printf("’cp’ is greater than ’hiya’.\n");

CP1–21 – slide 11 – 8th November 2010

Comparing arrays of other types

A string is a char array. What about comparing arrays of ints or floats?

int memcmp (const void *a1, const void *a2, size_t size);

I memcmp compares the size bytes of memory beginning at a1
against the size bytes of memory beginning at a2.

I Value returned has the same sign as the difference between the first
differing pair of bytes.

I For this reason, only useful for testing equality, not relative order.

CP1–21 – slide 12 – 8th November 2010



strncpy and friends

The requirement to ensure that s1 has enough space in strcpy(s1,s2)
etc. is tedious – have to check length of s2. Frequent cause of ‘buffer
overflows’ and security exposures.
For safety, all professionally written C code uses:

char *strncpy(char *dest, const char *src, size_t n);

which copies at most n characters of src. Example:

const int LEN = 50; /* 50 character strings (excl. null) */
char s[LEN+1]; /* add one for the null */

strncpy(s,maybe_long_string,LEN);
s[LEN] = ’\0’; /* make sure there’s a null at the end */

Similarly for strncat, snprintf and so on.

CP1–21 – slide 13 – 8th November 2010

Assigned Reading (Kelley and Pohl)

For Strings: §6.10, §6.11, Appendix A.14

CP1–21 – slide 14 – 8th November 2010


