Computer Programming: Skills & Concepts (CP1)
Strings

8th November 2010

CP1-21 - slide 1 — 8th November 2010

Today's lecture

> Strings.
» String 1/0.

» String Comparison.

CP1-21 - slide 3 — 8th November 2010

Last lecture

Sorting with merge sort and bubble sort.

CP1-21 - slide 2 — 8th November 2010

Strings

A string is any 1-dimensional character array that is terminated by a null
character.
» Null is >\0’.
» Strings are declared in function arguments either as char *s or
char s[].
eg, void foo(char *s) or void foo(char s[])
» In declaring a string, array length must be 1 greater than the longest
string it will hold, to allow for the null.
eg, char[11] can hold a 10-character string.

CP1-21 - slide 4 — 8th November 2010




The string library

» Need to include it at the start:
» #include <string.h>
» To copy a string s2 into s1i:
» strcpy(sl,s2); strcpy(sl, "Hello\n");
» To add s2 onto the end of s1:
» strcat(sl,s2)
» Returns the length of s1:

» strlen(sl)

v

Many others ...

CP1-21 - slide 5 — 8th November 2010

String 1/0
(don’t need <string.h> for these)

» To printf a string: printf("%s", s1);
» To read in a string:
» scanf("Ys", s1); /* ?why no & on s1? */
» To print a float a into a string s1:
» sprintf(sl,"hello, num=yf", a);
» sprintf returns an integer, being the number of chars written;
» make sure s1 has space.
» Similarly, we can read ints/floats etc; from a string via sscanf:

» int sscanf(sl, "%d Bellevue Road", &door);
» Value returned is the number of variables assigned to.

CP1-21 - slide 7 — 8th November 2010

The string library — types

char *strcpy(char *pl, const char *p2);
Actually returns the pointer p1 which at return time holds the value of
*p2.

char *strcat(char *pl, const char *p2)
similar

size_t strlen(const char #*pl)
the return type will be unsigned int or similar.

WARNING: When using strcat or strcpy, it is your responsibility to
make sure pl has enough space. E.g:

char a[5];
strch(a’nThis string is too 1ong“);

will segfault, or worse, overwrite some other data.

CP1-21 - slide 6 — 8th November 2010

What about <, <=, == etc on strings?

int main(void) {
char sone[] = "hiya";
char stwo[] = "cp";
char sthr[] "coders";
if (sone <= stwo)
printf("’hiya’ is less than or equal to ’cp’.\n");
else
printf("’cp’ is less than ’hiya’.\n");
if (stwo <= sthr)
printf("’cp’ is less than or equal to ’coders’.\n");
else
printf("’coders’ is less than ’cp’.\n");
return EXIT_SUCCESS;

CP1-21 - slide 8 — 8th November 2010




<, <=, == don't work for strings

(sone <= stwo)

» sone and stwo are pointers to char variables (ie, are addresses in
memory).

» comparison is true is and only if address in sone is less than stwo.
Output is unpredictable: compiler may allocate memory addresses for
variables

in order of declaration in the program, or maybe
combination of declaration order and string length, or maybe
in reverse order of declaration in program, or even

in lexicographic order of initialization string (if given).

CP1-21 - slide 9 — 8th November 2010

strcmp

int strcmp(const char *sl, const char *s2);

returns 0 if s1 and s2 are equal,
a negative int if string s1 is lexicographically less than s2
a positive int if string s1 is lexicographically greater than s2

if (strcmp(sone, stwo) <= 0)

printf("’hiya’ is less than or equal to ’cp’.\n");
else

printf("’cp’ is greater than ’hiya’.\n");

CP1-21 - slide 11 — 8th November 2010

Better (non)-example for <=

char sone[12], stwo[12];
printf ("Input 1 please: ");
scanf ("%s", sone);
printf ("/nInput 2 please: ");
scanf ("%s", stwo);
if (sone <= stwo)
printf("%s is less than %s.\n", sone, stwo);
else
printf("%s is less than %s.\n", stwo, somne);

No initialization bias on memory-allocation.
Can swap roles of input 1 and 2 to see result of comparison is non-
lexicographic.

CP1-21 - slide 10 — 8th November 2010

Comparing arrays of other types

A string is a char array. What about comparing arrays of ints or floats?

int memcmp (const void *al, const void *a2, size_t size);

» memcmp compares the size bytes of memory beginning at a1
against the size bytes of memory beginning at a2.

» Value returned has the same sign as the difference between the first
differing pair of bytes.

» For this reason, only useful for testing equality, not relative order.

CP1-21 - slide 12 — 8th November 2010




strncpy and friends

The requirement to ensure that s1 has enough space in strcpy(s1,s2)
etc. is tedious — have to check length of s2. Frequent cause of ‘buffer
overflows’ and security exposures.

For safety, all professionally written C code uses:

char *strncpy(char *dest, const char *src, size_t n);

which copies at most n characters of src. Example:

const int LEN = 50; /* 50 character strings (excl. null) */
char s[LEN+1]; /* add one for the null */

strncpy(s,maybe_long_string,LEN) ;
s[LEN] = °\0’; /* make sure there’s a null at the end */

Similarly for strncat, snprintf and so on.

CP1-21 - slide 13 — 8th November 2010

Assigned Reading (Kelley and Pohl)
For Strings: §6.10, §6.11, Appendix A.14

CP1-21 - slide 14 — 8th November 2010




