Summary of Lecture 7

▶ Summary of Practical 1
▶ The descartes.h package.
▶ Example program square.c

This Lecture

▶ The while statement.
▶ The for statement.
▶ fibonacci.c
▶ prime.c
▶ scanf and erroneous input.

while

while (<condition>) {
<statement_sequence>;
}

while means “repeat until failure” (of the <condition>).
<statement_sequence> must alter some parameters involved in <condition>. WHY?
Fibonacci Numbers

0 1
0 + 1 = 1
1 + 1 = 2
1 + 2 = 3
2 + 3 = 5
3 + 5 = 8
5 + 8 = 13
8 + 13 = 21

fibonnaci.c

```c
int main(void) {
    int n, next, count;
    int previous = 0; /* Fibonacci -1 */
    int current = 1; /* Fibonacci 0 */
    ...
    count = 0;
    while (count != n) {
        next = previous + current; // i.e. 2 = 0 + 1
        previous = current;
        current = next; // after: 2 + 1
        ++count;
    }
    printf("Fibonacci %d is %d", n, current);
    return EXIT_SUCCESS;
}
```

while-statement: Repeat n-times

```c
 initialise_iterator;
 while (<not iterator endpoint>) {
     <statement_sequence>;
     next_iterator_value;
 }
```
Fibonacci using for

```c
int n, next, count;
int previous = 0; /* Fibonacci -1 */
int current = 1; /* Fibonacci 0*/
for (count = n; count != 0; --count) {
    next = previous + current;
    previous = current;
    current = next;
}
```

Prime Numbers

Definition: A prime number is any natural number which has no factors except itself and 1.

Prime: 3, 7, 11

Not Prime: 9 (3*3), 10 (2*5)

Simple test for primes:

\[n \text{ is prime if } n=1 \text{ or if there is no integer } k \text{ between 2 and } \sqrt{n} \text{ such that } n \div k = 0. \]
prime.c

... k = 2; // First divisor-attempted is 2
int prime = 1;
while (((k* k) <= n) && (prime)) { // finish at sqrt(n)
 if ((n % k) == 0) {
 printf("%d is %d * %d\n", n, n/k, k);
 prime = 0; // terminate the loop
 }
 ++k; // Test each value
}
if (prime)
 printf("%d is a prime number\n", n);
return EXIT_SUCCESS;

CP1–8 – slide 13 – 7th October, 2010