
Computer Programming: Skills & Concepts
(INF-1-CP1)

double; float; quadratic equations

4th October, 2010

CP1–6 – slide 1 – 4th October, 2010

Practical 1

I Practical 1 is out today. :-)
Pick up a copy before leaving the lecture.

I due by 2pm, Monday 18 October.
I 4 Tasks:

I Part A on Imperial-to-Metric distance conversion.
I Parts B-D are basic geometric tasks, when input is given through an

interactive graphics tool.

I Should be able to attempt Parts A-C right away!

I We discuss Parts B-D in detail on Tuesday 5 October.

CP1–6 – slide 2 – 4th October, 2010

Lectures 4 and 5 (Julian)

I Integer arithmetic in C.

I Converting pre-decimal money to decimal.

I The int type and its operators.

I Variables.

I The “swap” problem.

I Assigning and re-assigning variables;

I The if-statement.

I Conditional expressions.

I Fixing the lsd program.

I Input using scanf.

CP1–6 – slide 3 – 4th October, 2010

Today’s Lecture

I More types: float and double.

I The marathon.c program.

I Quadratic Equations.

I General form of if-statement.

I Developing quadratic.c via nested if-statements.

I Boolean operators.

CP1–6 – slide 4 – 4th October, 2010

A tiny problem

Calculate the number of kilometres in a marathon

We know:
I The number of miles (26) and yards (385) that make up the

marathon distance;

I How many kilometres correspond to a mile (∼1.609);

I How many yards in a mile (1760).

How to compute the marathon distance in kilometres?

CP1–6 – slide 5 – 4th October, 2010

Types: float

I A signed floating-point number:
I for example, 1.5, -2.337, 6× 1023, 0.0 (note the decimal points);
I for example, a number in a pocket calculator.

I Accurate to about 7 significant digits:
I Max value is 3.40282347 ∗ 1038;
I Requires the same amount of storage as int.

I Contrast with real numbers in mathematics?
I Print with printf("%f", floatVariable).

I %f means “float”

CP1–6 – slide 6 – 4th October, 2010

Types: double

I A float with double precision.
I Accurate to about 15 significant digits:

I Max value is 1.7976931348623157 ∗ 10308;
I Requires twice the storage space as float;
I The computer has to work harder when computing with doubles;
I Values may depend on your computer.

I Print with printf("%lf", doubleVariable);
I The %lf meams “long float”

CP1–6 – slide 7 – 4th October, 2010

Choosing a Type

I float
I For engineering calculations: eg, 3.0/2.0 = 1.5;
I When small inaccuracies is acceptable: 0.9999999 may be 1.0;
I When speed is important.

I double
I When more precision is required.

I int
I For indexing, status codes, etc.
I When inputting/outputting values which are naturally integer.

I Speed depends on hardware - int math is not necessarily faster!

CP1–6 – slide 8 – 4th October, 2010

marathon.c

#include <stdio.h>

#include <stdlib.h>

const float KILOMETRES_PER_MILE = 1.609;

const float YARDS_PER_MILE = 1760.0;

int main(void) {

int miles, yards;

float kilometres;

miles = 26; yards = 385;

kilometres = (miles + yards/YARDS_PER_MILE)* KILOMETRES_PER_MILE;

printf("%d miles and %d yards ", miles, yards);

printf("equals %f kilometres.\n", kilometres);

return EXIT_SUCCESS;

}

CP1–6 – slide 9 – 4th October, 2010

Mixing Types and casting

What happens when we divide a float by an int?

3.0/2 = ?

Sometimes this will work, sometimes not.
Safest option is to cast the integer into a float:

3.0/(float)2 = 1.50

CP1–6 – slide 10 – 4th October, 2010

marathon1.c (explicit casting)

#include <stdio.h>

#include <stdlib.h>

const float KILOMETRES_PER_MILE = 1.609;

const float YARDS_PER_MILE = 1760.0;

int main(void) {

int miles, yards;

float kiloms;

miles = 26; yards = 385;

kiloms = ((float)miles + (float)yards/YARDS_PER_MILE)* KILOMETRES_PER_MILE;

printf("%d miles and %d yards ", miles, yards);

printf("equals %f kilometres.\n", kilometres);

return EXIT_SUCCESS;

}

CP1–6 – slide 11 – 4th October, 2010

Mathematical Operators in C

+ Addition.

− Subtraction or negation.

* Multiplication (don’t use ‘x’).

/ Division - order is important here!

% Integer remainder (eg, 5 % 3 = 2).
% is an overloaded symbol).

++ Increment (x++ means x = x+1).

−− Decrement (x-- means x = x-1).

sqrt Computes the square-root of its argument, returning a
double - eg sqrt(64.0) returns 8.0.

CP1–6 – slide 12 – 4th October, 2010

Quadratic equations

Consider any quadratic polynomial of the form ax2 + bx + c .
We know this equation has exactly two complex roots (solutions to
ax2 + bx + c = 0) given by:

x =
−b ±

√
b2 − 4ac

2a
.

Suppose we want real roots ONLY.
Three cases:

I If b2 < 4ac, there are no real solutions.

I If b2 = 4ac, there is one real solution: −b/(2a).

I If b2 > 4ac, there are two different real solutions.

CP1–6 – slide 13 – 4th October, 2010

quadratic.c - attempt 1

/* Compute the two roots of a quadratic. */

#include <stdio.h>

#include <stdlib.h>

#include <math.h> // Need to include math.h to use sqrt.

int main(void) {

/* Vars for the 3 co-efficients, and for the roots we’ll find.*/

int a, b, c;

double x1, x2;

printf("Input the x^2 co-efficient a: ");

scanf("%d", &a);

printf("Input the x co-efficient b: ");

scanf("%d", &b);

printf("Input the constant term c: ");

scanf("%d", &c);

x1 = (-(double)b - sqrt((double)(b*b - 4*a*c)))/((double)(2*a));

x2 = (-(double)b + sqrt((double)(b*b - 4*a*c)))/((double)(2*a));

printf("The solutions to %dx^2 +%dx +%d = 0 are ", a, b, c);

printf("%lf and %lf.\n", x1, x2);

return EXIT_SUCCESS;

}

note: Not enough to include <math.h>
I This is just a header file for the math library.
I Must also add -lm to gcc options: gcc -Wall -lm quadratic.c

CP1–6 – slide 14 – 4th October, 2010

Assumptions :-(

We made some HUGE assumptions for quadratic.c

(A1) We assumed that sqrt((double)(b*b +4*a*c)) would return a
value! But

√
b2 − 4ac is complex if b2 < 4ac, and hence C’s sqrt

function is UNDEFINED in this case.

(A2) By solving a quadratic, we (implicitly) assumed a is non-zero.

SOLUTION - use the (general) if statement.

CP1–6 – slide 15 – 4th October, 2010

if statement - general form

if (<condition-1>)
<statement-sequence-1>;

else if (<condition-2>)
<statement-sequence-2>;

...
else

<statement-sequence-n>;

I <condition-1>, . . ., <condition-(n-1)> are all boolean
expressions.

I <statement-sequence-1>, . . ., <statement-sequence-n> are all
sequences of C-programming statements.

CP1–6 – slide 16 – 4th October, 2010

Boolean operators

Assume e1 and e2 are (usually arithmetic) expressions . . .
We can apply boolean operators to form a boolean expression.

e1 == e2 e1 equal to e2
e1 != e2 e1 not equal to e2
e1 < e2 e1 less than e2
e1 <= e2 e1 less than or equal to e2
e1 > e2 e1 greater than e2
e1 >= e2 e1 greater than or equal to e2.

note: We can compare float expressions in this way - but int
comparisons are most reliable.

CP1–6 – slide 17 – 4th October, 2010

More complicated Boolean expressions

Assume e1 and e2 are boolean expressions . . .
Can build more complicated boolean expressions iteratively.

0 false (always)
non-zero true (always)
!e1 true if e1 is false
e1 && e2 true if (e1 is true and e2 is true)
e1 || e2 true if (e1 is true or e2 is true)

The expressions e1, e2 are (formally) integer expressions.
Can think of integers as (informally) acting as boolean “type”.

CP1–6 – slide 18 – 4th October, 2010

quadratic1.c - general if statement

if (b*b > 4*a*c) {

x1 = (-(double)b - sqrt((double)(b*b -4*a*c)))/((double)(2*a));

x2 = (-(double)b + sqrt((double)(b*b -4*a*c)))/((double)(2*a));

....

return EXIT_SUCCESS;

}

else if (b*b == 4*a*c) {

x1 = -((double)b)/((double)(2*a));

....

return EXIT_SUCCESS;

}

else {

printf("No real solns to %dx^2 + %dx +%d = 0.\n", a, b, c);

return EXIT_SUCCESS;

}

CP1–6 – slide 19 – 4th October, 2010

Nested if-statements

I The <statement-sequence> place-holder in the general
if-statement allows other if-statements to be part of the program
fragment.

I This is a “nested” use of the if-statement.

I Example - refine our quadratic.c program further.

CP1–6 – slide 20 – 4th October, 2010

quadratic.c - header and input code

#include <stdio.h>

#include <stdlib.h>

#include <math.h> // Need to include math.h to use sqrt.

int main(void) {

int a, b, c;

double x1, x2;

printf("Input the x^2 co-efficient a: ");

scanf("%d", &a);

printf("Input the x co-efficient b: ");

scanf("%d", &b);

printf("Input the constant term c: ");

scanf("%d", &c);

CP1–6 – slide 21 – 4th October, 2010

quadratic.c - a6=0 case

if (b*b > 4*a*c) {

x1 = (-(double)b - sqrt((double)(b*b -4*a*c)))/((double)(2*a));

x2 = (-(double)b + sqrt((double)(b*b -4*a*c)))/((double)(2*a));

....

return EXIT_SUCCESS;

}

else if (b*b == 4*a*c) {

x1 = -((double)b)/((double)(2*a));

....

return EXIT_SUCCESS;

}

else {

printf("No real solns to %dx^2 + %dx +%d = 0.\n", a, b, c);

return EXIT_SUCCESS;

}

CP1–6 – slide 22 – 4th October, 2010

quadratic.c - what if a=0

If ax2 + bx + c is a quadratic, and a is 0, then we have a linear equation:

bx + c .

This has . . .

I Exactly one root of value −c/(b), if b 6= 0.

I No root at all, if b = 0

Now incorporate this case into our code:

CP1–6 – slide 23 – 4th October, 2010

quadratic2.c - all cases

if (a != 0) {

if (b*b > 4*a*c) {

x1 = (-(double)b - sqrt((double)(b*b -4*a*c)))/((double)(2*a));

x2 = (-(double)b + sqrt((double)(b*b -4*a*c)))/((double)(2*a));

...

}

else if (b*b == 4*a*c) {

x1 = -((double)b)/((double)(2*a));

....

}

else {

printf("No real solns to %dx^2 + %dx +%d = 0.\n", a, b, c)

;

return EXIT_SUCCESS;

}

}

else if (b != 0) {

x1 = -((double)c)/((double)(b));

printf("1 real soln to %dx^2 +%dx +%d = 0.\n", a, b, c);

printf("It is %lf.\n", x1);

return EXIT_SUCCESS;

}

else {

printf("No real solns to %dx^2 + %dx +%d = 0.\n", a, b, c);

return EXIT_SUCCESS;

}

}

CP1–6 – slide 24 – 4th October, 2010

