Computer Programming: Skills & Concepts (CP1)
Files in C

18th November, 2010

CP1-26 — slide 1 — 18th November, 2010

Today's lecture

» Character oriented /O (revision)
» Files and streams

» Opening and closing files

CP1-26 — slide 2 — 18th November, 2010

|diom for character-oriented 1/0

char c;
while ((c = getchar()) != EOF) {

/* Code for processing the character c */

}

CP1-26 — slide 3 — 18th November, 2010

File length

char c;

int length = 0;

while ((c = getchar()) != EOF) {
++length;

}

printf("File length is J%d\n", length);

Don’t forget to initialise length, i.e. the length = O part.

CP1-26 — slide 4 — 18th November, 2010

Copying a file

char c;

while ((c = getchar()) != EOF) {
putchar(c);
}

Note that putchar(c) is the equivalent to printf ("%c", c)

CP1-26 — slide 5 — 18th November, 2010

Copying a file, checking for errors

char c;

while ((c = getchar()) != EOF) {
/* The manual says putchar returns the character written,
or EOF on error (e.g. disk full) */
if (putchar(c) == EOF) {
perror("error writing file");
exit(1);
3
3

CP1-26 — slide 6 — 18th November, 2010

Example: Count occurrences of uppercase letters

int main(void) {
int c, countu;
countu = 0;

while ((c = getchar()) != EOF) {
if (isupper(c)) {
countu += 1;
}
}

printf ("%d uppercase letters\n", countu);

CP1-26 — slide 7 — 18th November, 2010

The Unix |/O model

An executing program has a standard input, a standard output, and a
standard error.

We've been using these — they're all usually the terminal

getchar(), putchar(), printf() etc. all use standard input/output.

CP1-26 — slide 8 — 18th November, 2010

Unix file redirection Standard Streams

The Unix shell lets one specify the standard input, output and error for All C programs begin with three standard streams

the program: » stdin is read by getchar ()

_ > L
Input from a file: ./ftour < datab0 stdout is written to by putchar(c)

» stderr is a second output stream, used by error message functions

o (e.g. perror()).
Input and output redirection: ./ftour < datab0 > log

(S
» OQutput to a file: ./ftour > log
>

These streams are defined in stdio.h.
>

Input and output from/to a program (piping):
cat datab0 | ./ftour | grep length

CP1-26 — slide 9 — 18th November, 2010 CP1-26 — slide 11 — 18th November, 2010
Streams Using named streams
In C we talk about input and output streams All the standard |/O functions have a variant that has a named stream as
> getchar() reads from the standard input stream a parameter
» putchar(ch) writes to the standard output stream fprintf (stdout, "Hello") = printf ("Hello")

You might think of a stream as a file — but in practice, streams often end

putc(c, stdout) = putchar(c)
at a keyboard, a window or another program.

getc(stdin) = getchar()
It is more accurate to think of streams as connectors to files etc., which
hide the tricky details. (You don’t need to know whether your stream is a Use the manual pages to find the variants!

file, terminal, network connection etc.) Same idea as sscanf, sprintf for strings.

CP1-26 — slide 10 — 18th November, 2010 CP1-26 — slide 12 — 18th November, 2010

Remember practical 2

void SkipWhiteSpace(void) {
int ch = ReadChar();

while (ch ==’ 2 || ch == ’\n’ || ch == ’\t’) {
ch = ReadChar();
}

UnReadChar(ch) ;
}

CP1-26 — slide 13 — 18th November, 2010

Using standard calls

void SkipWhiteSpace(void) {
int ch = getc(stdin); /* or getchar() */

while (ch ==’ 2 || ch == ’\n’ || ch == ’\t?) {

ch = getc(stdin); /* or getchar() */
}

ungetc(ch, stdin); /* There is no ungetchar(ch) */

3

CP1-26 — slide 14 — 18th November, 2010

Example: Replace “iz" by “is

int main(void) {
int ¢, prev = 0;

while ((c = getchar()) != EOF) {
if (prev == ’i’ && c == ’z’) {
putchar(’s’);
} else {
putchar(c);
}
prev = c;
}
}

CP1-26 — slide 15 — 18th November, 2010

Using named streams

int main(void) {
int ¢, prev = 0;

while ((c = getc(stdin)) != EOF) {

if (prev == ’e’ && c == ’z’) {
putc(’s’, stdout);
} else {
putc(c, stdout);
}
prev = c;
}

}

CP1-26 — slide 16 — 18th November, 2010

Opening new streams

Streams have the type FILE *. E.g.

FILE *stdin, *stdout, *stderr;
FILE *wordlist;

Streams do not always end in a file despite the name!

CP1-26 — slide 17 — 18th November, 2010

Opening files

FILE *wordlist;

wordlist = fopen("wordlist.txt", "r");

if (wordlist == NULL) {
printf("Can’t find the word list\nBye!\n");
return EXIT_FAILURE;

}

/* To be completed */

fclose(wordlist);

CP1-26 — slide 18 — 18th November, 2010

fopen()

FILE *fopen(const char *path, const char *mode)

Opens a stream for the file named path
» E.g. fopen("output.txt", "w");
» E.g. fopen("/usr/include/stdio.h", "r");

The mode selects read or write access
» This prevents accidents

» Anyway, you can't write to a CD-Rom.

fopen() returns NULL on failure

CP1-26 — slide 19 — 18th November, 2010

fopen() modes

"r": Open text file for reading

"w": Open text file for writing

"a": Open text file for appending

and several others ...

What happens if the file exists already?

CP1-26 — slide 20 — 18th November, 2010

Copying a File

FILE *in, *out;

in = fopen("wordlist.txt", "r");
out = fopen("copy.txt", "w");

while ((c = getc (in)) != EOF) {
putc(c, out);
}

fclose(in);
fclose(out);

CP1-26 — slide 21 — 18th November, 2010

fclose()

fclose() discards a stream

It is good practice to close streams when they are no-longer needed, to
avoid operating system limits.

Exiting a program closes all streams.

CP1-26 — slide 22 — 18th November, 2010

perror (): reporting errors
fopen() may return NULL for many reasons

File not found
Invalid path
Permission denied
Out of disk space
Etc.

vV vVv.v. v Y

perror () prints an error related to the last failed system call.

CP1-26 — slide 23 — 18th November, 2010

Using perror()

FILE *wordlist;

wordlist = fopen("silly.txt", "r");

if (wordlist == NULL) {
perror("Can’t open word list");

return EXIT_FAILURE;
}

./prac3

Can’t open word list: No such file or directory

CP1-26 — slide 24 — 18th November, 2010

Buffering
(Most) streams are buffered: Text written to a stream may not appear
immediately.
fflush(FILE *stream)

forces the pending text on a stream to be written.

As does fclose(stream).
fprintf (stream, "\n");

Streams connected to terminals are usually flushed after each newline
character.

CP1-26 — slide 25 — 18th November, 2010

Summary: Streams

Have the type FILE *

Programs start with three streams
> stdin
> stdout

» stderr

CP1-26 — slide 26 — 18th November, 2010

Summary: New functions

fopen() — open a stream for a file
getc () — similar to getchar ()
putc() — similar to putchar ()
fprintf () — similar to printf ()
fscanf () — similar to scanf ()
fclose() — closes a stream
fflush() — flushes a buffer

perror() — reports an error in a system call

CP1-26 — slide 27 — 18th November, 2010

