
Computer Programming: Skills & Concepts (CP1)
Recursion and flags

16th November, 2010

CP1–25 – slide 1 – 16th November, 2010

Today’s lecture

I Recursion: functions that call themselves

I Flags: binary variables that take note of state in loops

I Recursive version of MergeSort

CP1–25 – slide 2 – 16th November, 2010

Computing Factorial

Task: write a function that computes factorial

n! =

{
n × (n − 1)! if n > 1

1 if n = 1

CP1–25 – slide 3 – 16th November, 2010

Factorial with for loop

int factorial(int n) {
int fact = 1;
for(int i=2; i<=n; i++) {
fact = fact * i;

}
return fact;

}

Nothing new here...

CP1–25 – slide 4 – 16th November, 2010

Factorial with recursion

int factorial(int n) {
if (n<=1)
return 1;

return n * factorial(n-1);
}

The function factorial calls itself!

CP1–25 – slide 5 – 16th November, 2010

Execution of recursion

factorial(5)
return 5 * factorial(4);

return 4 * factorial(3);
return 3 * factorial(2);

return 2 * factorial(1);
return 1;

return 2 * 1;
return 3 * 2

return 4 * 6
return 5 * 24

120

CP1–25 – slide 6 – 16th November, 2010

Fibonacci numbers

The Fibonacci numbers are the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

F (n) =

F (n − 1) + F (n − 2) if n > 1

1 if n = 1

0 if n = 0

F (n+1)
F (n) converges to the golden ratio 1.618034.

CP1–25 – slide 7 – 16th November, 2010

Recursive computation of Fibonacci numbers

int fibonacci(int n) {
if (n==0)
return 0;

if (n==1)
return 1;

return fibonacci(n-1) + fibonacci(n - 2);
}

I How many function calls does it roughly take to compute
fibonacci(10) or fibonacci(100)?

I Could this be done faster?

CP1–25 – slide 8 – 16th November, 2010

Detecting events in a loop

We often loop through an array to string to detect a single event:

#define FOUND 1
#define NOT_FOUND 0
char word[20] = "abracadabra!";

for(int i=0; word[i] != ’\0’; i++) {
if (word[i] == ’c’)
return FOUND;

}
return NOT_FOUND;

Here we use the trick of exiting a function at different places. This may
not always be possible.

CP1–25 – slide 9 – 16th November, 2010

Flags

Use of a flag:

#define FOUND 1
#define NOT_FOUND 0

char word[20] = "abracadabra!";

int flag = NOT_FOUND;
for(int i=0; word[i] != ’\0’; i++) {
if (word[i] == ’c’)
flag = FOUND;

}

CP1–25 – slide 10 – 16th November, 2010

Multiple flags

#define FOUND 1
#define NOT_FOUND 0

char word[20] = "abracadabra!";

int flag_c = NOT_FOUND;
int flag_q = NOT_FOUND;
for(int i=0; word[i] != ’\0’; i++) {
if (word[i] == ’c’)
flag_c = FOUND;

else if (word[i] == ’q’)
flag_q = FOUND;

}

CP1–25 – slide 11 – 16th November, 2010

Finding the longest streak

Input: String that encodes wins (W) and losses (L)

char word[20] = "WLWWWLLWLLLLWW";
char flag = ’X’; int length = 0, longest = 0;
for(int i=0; word[i] != ’\0’; i++) {
if (word[i] == flag) {
length++;
if (length > longest) longest = length;

}
else {
length = 1;
flag = word[i]; // indicates if tracking wins or losses

} }
printf("longest streak is %d games.\n",longest);

CP1–25 – slide 12 – 16th November, 2010

MergeSort through recursion

I Previously we saw a “bottom-up” version of MergeSort.
I Typical implementation of MergeSort is recursive:

I merge function is identical -
takes two sorted arrays and creates the “merge” of those arrays

I “top-down” implementation -
The sort of the array key is the result of sorting each half of key and
then merge-ing those two sorted subarrays

This “declarative” way of thinking about a problem is often the best way
of coming up with a recursive algorithm.

CP1–25 – slide 13 – 16th November, 2010

recursive mergesort

void mergesort(int key[], int n){
int j, *w;
if (n>1) {
w = calloc(n, sizeof(int)); /* space for temporary array */
assert (w != NULL);
j = n/2;
mergesort(key, j);
mergesort(key+j, n-j);
merge(key, key+j, w, j, n-j);
for (j = 0; j < n; ++j)
key[j] = w[j];

free(w); /* Free up dynamic memory no longer in use. */
}

}

I simpler than before
I I thought it would be slower than before (not really)

CP1–25 – slide 14 – 16th November, 2010

Office hours

For weeks 9, 10, 11, in Informatics Forum, IF 5.16 (Mary’s office)

I Wednesday, 11am-12

I Thursday, 10am-11am

I responsive mode (ie, you bring the questions)

Start Wednesday 17th November.
Finish Thursday 2nd December.

CP1–25 – slide 15 – 16th November, 2010

