
Computer Programming: Skills & Concepts (CP1)
Libraries and separate compilation

15th November, 2010

CP1–24 – slide 1 – 15th November, 2010

Compiling a C program

Is actually a three stage process. . .

- The ‘C pre-processor’ adds all the #include files and expands the
#define statements.

- The ‘C compiler’ compiles the source files into object files.

- The ‘Linker’ links the object files with libraries into an executable
that you can run.

gcc myprog.c -lm

CP1–24 – slide 2 – 15th November, 2010

The stages of compilation

myprog.c

#include <stdio.h>
#include <math.h>

int main() {
...
float sqrt(x);
...
}

gcc myprog.c −lm

pre−processor

compiler

source files:

myprog.c + stdio.h + math.h

linker

myprog.o − object files

libmath.a

a.out

CP1–24 – slide 3 – 15th November, 2010

The pre-processor

#include <stdio.h> /* These header files get added

#include <stdlib.h> * directly into the program code

#include <math.h> * by the pre-processor. */

#define SIZE 20 /* Pre-processor will put 20 everywhere SIZE

* appears in code (except inside quotes) */

int main() {

int p, q;

float x[SIZE], y[SIZE]; /* will get changed to x[20], y[20] */

....

for (p=0; p < SIZE; p++) /* will get changed to have p < 20 */

...

}

CP1–24 – slide 4 – 15th November, 2010

To do compilation only

To compile into an object file, and not link.

gcc -c myprog.c

A file is produced called myprog.o
To link object files:

gcc myprog.o -lm

executable file a.out is produced.
To produce a different name of executable:

gcc -o name myprog.o -lm

(To run just the pre-processor) Not usual to do this manually.

cpp myprog.c

CP1–24 – slide 5 – 15th November, 2010

Some more compiler flags

Optimization:

-O: Compile the program for performance.

-O2/-O3: Aggressive optimisations. At the expense of compile time and
memory usage.

gcc -O3 myprog.c -lm

De-bugging:

-g flag adds information to enable a debugger tool to work.

gcc -g myprog.c -lm

CP1–24 – slide 6 – 15th November, 2010

Functions in separate files

A program prog1.c consists of its main function, with a single
function func1(). Also the math library is used.

Place function in a separate file func1.c. Compile both:

gcc -c prog1.c
gcc -c func1.c

Then link together into a.out

gcc func1.o prog1.o -lm

Why?
- function can easily be re-used elsewhere.
- No need to re-compile func1 if it hasn’t changed (good for large files)!

CP1–24 – slide 7 – 15th November, 2010

A simple program

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

float func1(float y);

int main() {

float x,y;

y = 0.5;

x = func1(y);

printf("x was %f\n",x) ;

return EXIT_SUCCESS;

}

float func1(float y) {

float x;

x = sin(y)*cos(y);

return x;

}

CP1–24 – slide 8 – 15th November, 2010

Split into 2 files

Make two files prog1.c and func1.c.

I prog1.c contains just the main body of original program;

I func1.c contains just the function func1, plus some #include
statements;

I Must include the following at top of prog1.c:
extern float func1(float y);

CP1–24 – slide 9 – 15th November, 2010

extern declaration

Indicates to the compiler that a variable or function is to be found in an-

other file.
Will be resolved later by the linker.

Only applies at global scope.
i.e only to global variables and functions.

Where to put these extern function declarations?

I Can be messy with many functions in 1 file.

I We can use the pre-processor.

CP1–24 – slide 10 – 15th November, 2010

Header file option

Make three files prog1.c, func1.h, and func1.c.

I prog1.c contains the main body of original program:
+ also contains #include "func1.h"
- but no longer has the extern definition for func1.

I func1.c contains just the function func1, plus some #include
statements;

I func1.h is just the following declaration:
extern float func1(float y);

CP1–24 – slide 11 – 15th November, 2010

Header files

Files containing function declarations are usually called header files.

Convention:

- function1.h contains function headers.

- function1.c contains the functions themselves.

To add functions to your program:

- #include "function1.h"

- gcc function1.o myprog.o

Might be many functions per file.

CP1–24 – slide 12 – 15th November, 2010

Compilation (summary)

I Compilation is a three stage process.

I Can compile into object files separately.

I Multiple object files can be linked into a single program.

I Need to declare functions as ‘extern’.

I Use of header files.

CP1–24 – slide 13 – 15th November, 2010

make and Makefiles

make is a tool for automating the building of programs.

A Makefile consists of a number of rules.
One rule consists of:

- target: a target is a file(s) to be built.

- dependencies: a list of files that the target relies on.

- commands: how to build the target.

make <target_file> will build the file based on the rules.

CP1–24 – slide 14 – 15th November, 2010

A simple Makefile

func1.o: func1.c func1.h project.h
gcc -c func1.c

func2.o: func2.c func2.h project.h
gcc -c func2.c

program: func1.o func2.o program.c project.h
gcc -o program func1.o func2.o program.c -lm

all: program

- project.h has constants for the whole project. All files depend on
it.

- func1.o depends on func1.c and func1.h.

- program depends on func1 and func2.

CP1–24 – slide 15 – 15th November, 2010

Makefiles

I Very flexible, powerful - and complicated!

I MACROS - constants that can be defined

I Special macros: $@ is the name of the file to be made:

CFLAGS= -c
printenv: printenv.c
gcc $(CFLAGS) $@.c -o $@

I Makefiles can call any command, and can be used for a wide variety
of tasks.

CP1–24 – slide 16 – 15th November, 2010

