
Computer Programming: Skills & Concepts (CP1)
Sorting II

4th November 2010

CP1–20 – slide 1 – 4th November 2010



Tuesday’s lecture

I BubbleSort algorithm (from slides18.pdf).

I (on board) of running-time of BubbleSort.

I The merge function (for two sorted sub-arrays).

Due to time constraints, we did NOT finish the slides for Lecture 19
(MergeSort) . . . we finish these today.

CP1–20 – slide 2 – 4th November 2010



Today’s lecture

I Review of merge function.

I The MergeSort Algorithm.

I Running time of MergeSort.
I Two features used in mergesort:

I calloc for dynamically-sized arrays.
I ++ expressions for incrementing.

CP1–20 – slide 3 – 4th November 2010



Trial run of mergesort

int main(void) {
int i, sz, key[] = {4, 3, 1, 67, 0, 4, -5, 37, 7, 2, -1, 199};
sz = sizeof(key)/sizeof(int);
printf("Before mergesort: \n");
wrt(key, sz);
printf("\n");
mergesort(key, sz);
printf("After mergesort:\n");
wrt(key, sz);
return EXIT_SUCCESS;

}

CP1–20 – slide 4 – 4th November 2010



Results of Trial run

[fletcher]mcryan: ./a.out
Before mergesort:

4 3 1 67 0 4 -5 37 7 2 -1 199

3 4 1 67 0 4 -5 37 2 7 -1 199
1 3 4 67 -5 0 4 37 -1 2 7 199
-5 0 1 3 4 4 37 67 -1 2 7 199
-5 -1 0 1 2 3 4 4 7 37 67 199

After mergesort:
-5 -1 0 1 2 3 4 4 7 37 67 199

I 1st step: all length-2 blocks sorted;

I 2nd step: all (three) length-4 blocks sorted;

I 3rd step: block of length-8 sorted, end-block (length-4) unchanged;

I 4th step: length-8 block merged with the end-block.

CP1–20 – slide 5 – 4th November 2010



Features of mergesort implementation

A CHALLENGING PROGRAM

I Implemented in a “bottom-up” fashion (more standard
implementation is via recursion).

I Uses the calloc function to dynamically allocate memory of a
variable size.

I Uses the ++ operator for incrementing inside another expression ⇒
complicated meaning

CP1–20 – slide 6 – 4th November 2010



calloc

Usually, when defining arrays, we must specify the length of the array as
a fixed value chosen in advance (when writing the program).

To define array size dynamically, use calloc:

I calloc() takes 2 arguments (of type size t):

calloc(n,el size)

I This allocates (IF available) space for an array of length n of type el
(each cell using el size bytes).

I calloc returns a pointer to the address of the start of the array in
memory (assuming space is available)

I If that space is NOT available, calloc returns a NULL pointer.

I Space created is initialized to all-bits-0.

CP1–20 – slide 7 – 4th November 2010



Examples of calloc

Testing our sorting program on arrays of varying lengths:

int i, sz, *key;
double start, stop, t;
printf("Input desired size of array: ");
scanf("%d", &sz);
printf("\n");
key = calloc(sz, sizeof(int)); /* Make array of this size */
if (key != NULL) { /* check there was space */
for(i = 0; i < sz; i++) /* Fill array:
key[i] = rand() % 1000; * rand() returns 1 random int */

start = (double)clock();
mergesort(key, sz);
stop = (double)clock();
t = (stop-start)/CLOCKS_PER_SEC;
printf("Time on array of length %d was %f sec.\n", sz, t);

}

CP1–20 – slide 8 – 4th November 2010



Incrementing/decrementing with ++

4 ways to increment a variable:

x = x+1; x += 1; ++x; x++;

4 ways to decrement a variable:

x = x-1; x -= 1; --x; x--;

These commands/expressions can appear within other expressions - the
semantics (meaning/interpretation) is quite interesting in these cases.

CP1–20 – slide 9 – 4th November 2010



Side-effects

++x(“pre-increment”):
Add 1, then return the result to the expression ++x; is appearing in.

int x = 10;
printf("%d\n", ++x);

will print 11 to standard output (here “the expression ++x is appearing in
is ++x itself).

x++(“post-increment”):
Return value of x to the expression ++x; appears in, then add 1 to x.

int x = 10;
printf("%d\n", x++);

will print 10 to standard output.

CP1–20 – slide 10 – 4th November 2010



Use of ++ in merge

while (i < m && j < n) {
if (a[i] <= b[j])
c[k++] = a[i++];

else
c[k++] = b[j++];

}

is equivalent to

while (i < m && j < n) {
if (a[i] <= b[j]) {
c[k] = a[i];
i++; k++;

}
else {
c[k] = b[j];
j++; k++;

}
}

CP1–20 – slide 11 – 4th November 2010



Homework

I Sections 6.8 and 6.9 of Kelley and Pohl (for sorting)

I Section 2.10 of Kelley and Pohl (for increment/decrement)
I Experiment with the code.

I Run mergesort.c for arrays of length 50000, 100000, 200000, . . .
to see effect of size.

I Add the code-fragment for dynamically creating arrays to
bubblesort.c and test this on arrays of varying sizes.

I Compare results for MergeSort against BubbleSort.

CP1–20 – slide 12 – 4th November 2010


