Computer Programming: Skills & Concepts (CP1)
Sorting

2nd November 2010
Monday’s lecture

- Arguing a program is correct
- Linear Search of an array.
- Binary search of an array
- (Theoretical) measurement of running time
- Timing your code on DICE
- *I never got to cover the slides on BubbleSort*

NOTE In the tests in `search.c`, I did NOT initialise the test array to be *sorted* (as required by `BinarySearch`)

... does not matter as the key -1 is not in the array at all
Today’s lecture

- BubbleSort algorithm (from slides18.pdf).
- New sorting algorithm called MergeSort
- Analysis of running time.
- calloc for dynamically-sized arrays.
Merge

Idea:
Suppose we have two arrays a, b of length n, and m respectively, and that these arrays ARE ALREADY SORTED. Then the merge of a and b is the sorted array of length $n+m$ we get by walking through both arrays jointly, taking the smallest item at each step.

data example on board
```c
void merge(int a[], int b[], int c[], int m, int n) {
    int i=0, j=0, k=0;
    while (i < m && j < n) {
        if (a[i] <= b[j])
            c[k++] = a[i++];
        else
            c[k++] = b[j++];
    }
    while (i < m) /* copying the 'rest' into c */
        c[k++] = a[i++]; /* (if b got finished first) */
    while (j < n) /* copying the 'rest' into c */
        c[k++] = b[j++]; /* (if a got finished first) */
}
```
MergeSort - the idea

Given an array a of length n.

(i) Sort all subarrays of length 2: $a[0..1]$, $a[2..3]$, ...

(ii) Create sorted subarrays of length $2 \times 2 = 4$ by \textit{merging} pairs of the sorted length-2 subarrays . . .

(iii) Create sorted subarrays of length $2 \times 4 = 8$ by \textit{merging} pairs of the sorted length-4 subarrays . . .

. . .

\textit{Iterative} approach - build from “the bottom up”.

At each step we double the size of our “windows of interest”
void mergesort(int key[], int n){
 int j, k, *w;
 w = calloc(n, sizeof(int)); /* Allocate space for the array */
 assert (w != NULL); /* If not enough space, stop! */
 if ((n % 2) == 1)
 w[n-1] = key[n-1];
 for (k = 1; k < n; k *= 2) {
 for (j = 0; j < n - 2*k; j += 2*k)
 merge(key + j, key + j + k, w + j, k, k);
 if (n-j > k) /* k, n-j-k different => more work. */
 merge(key + j, key + j + k, w + j, k, (n-j)-k);
 }
 for (j = 0; j < n; ++j) /* copy sorted array into 'key' */
 key[j] = w[j];
 free(w); /* Free-up memory pointed to by w */
}
* Function to write-out the contents of key[]. */
void wrt(int key[], int sz) {
 int i;
 for (i = 0; i < sz; ++i)
 printf("%4d%s", key[i], ((i < sz -1) ? "" : "\n"));
}
Trial run

int main(void) {
 int i, sz, key[] = {4, 3, 1, 67, 0, 4, -5, 37, 7, 2, -1, 199};
 sz = sizeof(key)/sizeof(int);
 printf("Before mergesort: \n");
 wrt(key, sz);
 mergesort(key, sz);
 printf("After mergesort: \n");
 wrt(key, sz);
 return EXIT_SUCCESS;
}
In previous applications we have always specified the length of the array as a fixed parameter defined in advance, directly in the program.

To define array size \textit{dynamically}, use \texttt{calloc}:

\begin{itemize}
 \item \texttt{calloc()} takes 2 arguments (of type \texttt{size_t}):
 \begin{center}
 \texttt{calloc(n, el_size)}
 \end{center}
 \item This allocates (if available) space an array of length \texttt{n} of type \texttt{el} (each cell using \texttt{el_size} bytes).
 \item \texttt{calloc()} returns a pointer to the address of the start of the array in memory.
 \item Space created is initialized to all-bits-0.
 \item \texttt{malloc()} similar.
\end{itemize}
Running-time of mergesort

(a) We double the “merge-size” k (starting from 1) at each pass.
(b) Can do this ONLY $2 \log(n)$ times for $k < n$.
(c) Do a linear amount of “work” ($\Theta(n)$) across the array for each value of k.
 \Rightarrow Roughly $\Theta(n \log(n))$ overall running-time.

Not quite as obvious that (b) is true when the array-length is not a power-of-2 . . . still true though!

Big difference in speed from BubbleSort. EXPERIMENT
A more dramatic example

Sometimes the gap between a good and bad algorithm can be dramatic. Consider the problem of testing whether an n-bit number is prime.

- The obvious brute force method requires $2^{n/2}$ integer divisions
 - why?
 - This is completely infeasible if $n = 200$ (say).

- On the other hand, a (non-obvious) algorithm for primality testing which take time polynomial in n was discovered in 2002 (Agrawal-Kayal-Saxena)

(Needed for RSA public-key cryptosystem.)
Homework

▶ Sections 6.8 and 6.9 of Kelley and Pohl!
▶ Experiment with the code.