
Computer Programming: Skills & Concepts (CP1)
Sorting

2nd November 2010

CP1–19 – slide 1 – 2nd November 2010

Monday’s lecture

I Arguing a program is correct

I Linear Search of an array.

I Binary search of an array

I (Theoretical) measurement of running time

I Timing your code on DICE

I I never got to cover the slides on BubbleSort

NOTE In the tests in search.c, I did NOT initialise the test array to be
sorted (as required by BinarySearch)
. . . does not matter as the key −1 is not in the array at all

CP1–19 – slide 2 – 2nd November 2010

Today’s lecture

I BubbleSort algorithm (from slides18.pdf).

I New sorting algorithm called MergeSort

I Analysis of running time.

I calloc for dynamically-sized arrays.

CP1–19 – slide 3 – 2nd November 2010

Merge

Idea:

Suppose we have two arrays a, b of length n; and m
respectively, and that these arrays ARE ALREADY SORTED.
Then the merge of a and b is the sorted array of length n+m we
get by walking through both arrays jointly, taking the smallest
item at each step.

example on board

CP1–19 – slide 4 – 2nd November 2010



merge

void merge(int a[], int b[], int c[], int m, int n) {
int i=0, j=0, k=0;
while (i < m && j < n) {
if (a[i] <= b[j])
c[k++] = a[i++];

else
c[k++] = b[j++];

}
while (i < m) /* copying the ’rest’ into c
c[k++] = a[i++]; * (if b got finished first) */

while (j < n) /* copying the ’rest’ into c
c[k++] = b[j++]; * (if a got finished first) */

}

CP1–19 – slide 5 – 2nd November 2010

MergeSort - the idea

Given an array a of length n.

(i) Sort all subarrays of length 2: a[0..1], a[2...3]. . .

(ii) Create sorted subarrays of length 2 ∗ 2 = 4 by merging pairs of the
sorted length-2 subarrays . . .

(iii) Create sorted subarrays of length 2 ∗ 4 = 8 by merging pairs of the
sorted length-4 subarrays . . .

. . .

Iterative approach - build from “the bottom up”.

At each step we double the size of our “windows of interest”

CP1–19 – slide 6 – 2nd November 2010

mergesort

void mergesort(int key[], int n){
int j, k, *w;
w = calloc(n, sizeof(int)); /* Allocate space for the array */
assert (w != NULL); /* If not enough space, stop! */
if ((n % 2) == 1)
w[n-1] = key[n-1];

for (k = 1; k < n; k *= 2) {
for (j = 0; j < n - 2*k; j += 2*k)
merge(key + j, key + j + k, w + j, k, k);

if (n-j > k) /* k, n-j-k different => more work. */
merge(key + j, key + j + k, w + j, k, (n-j)-k);

for (j = 0; j < n; ++j) /* copy sorted array into ’key’ */
key[j] = w[j];

}
free(w); /* Free-up memory pointed to by w */

}

CP1–19 – slide 7 – 2nd November 2010

checking output

* Function to write-out the contents of key[]. */
void wrt(int key[], int sz) {
int i;
for (i = 0; i < sz; ++i)
printf("%4d%s", key[i], ((i < sz -1) ? "" : "\n"));

}

CP1–19 – slide 8 – 2nd November 2010



Trial run

int main(void) {
int i, sz, key[] = {4, 3, 1, 67, 0, 4, -5, 37, 7, 2, -1, 199};
sz = sizeof(key)/sizeof(int);
printf("Before mergesort: \n");
wrt(key, sz);
mergesort(key, sz);
printf("After mergesort:\n");
wrt(key, sz);
return EXIT_SUCCESS;

}

CP1–19 – slide 9 – 2nd November 2010

calloc

In previous applications we have always specified the length of the array
as a fixed parameter defined in advance, directly in the program.

To define array size dynamically, use calloc:

I calloc() takes 2 arguments (of type size t):
calloc(n,el size)

I This allocates (if available) space an array of length n of type el
(each cell using el size bytes).

I calloc () returns a pointer to the address of the start of the array
in memory.

I Space created is initialized to all-bits-0.

I malloc() similar.

CP1–19 – slide 10 – 2nd November 2010

Running-time of mergesort

(a) We double the “merge-size” k (starting from 1) at each pass.

(b) Can do this ONLY 2 log(n) times for k < n.

(c) Do a linear amount of “work” (Θ(n)) across the array for each value
of k.

⇒ Roughly Θ(n log(n)) overall running-time.

Not quite as obvious that (b) is true when the array-length is not a
power-of-2 . . . still true though!

Big difference in speed from BubbleSort. EXPERIMENT

CP1–19 – slide 11 – 2nd November 2010

A more dramatic example

Sometimes the gap between a good and bad algorithm can be dramatic.
Consider the problem of testing whether an n-bit number is prime.

I The obvious brute force method requires 2n/2 integer divisions
I why?
I This is completely infeasible if n = 200 (say).

I On the other hand, a (non-obvious) algorithm for primality testing
which take time polynomial in n was discovered in 2002
(Agrawal-Kayal-Saxena)

(Needed for RSA public-key cryptosystem.)

CP1–19 – slide 12 – 2nd November 2010



Homework

I Sections 6.8 and 6.9 of Kelley and Pohl!

I Experiment with the code.

CP1–19 – slide 13 – 2nd November 2010


