
Computer Programming: Skills & Concepts (CP1)
Searching and sorting

1st November 2010

CP1–18 – slide 1 – 1st November 2010



Correctness of a Program

I How can you show that a program is correct?

I Similar to a mathematical proof: show that certain statements are
true at all times in the program (“Invariants”)

I Brain teaser: Is it possible to write a program that checks any other
program, if it is correct?

CP1–18 – slide 2 – 1st November 2010



Power of a number

int Power(int n, int k)
/* Assumes k >= 0. Returns n^k: n raised to the power k. */
{

int p = 1, i = k;
/* Precondition: i >= 0 */
while (i > 0) {

/* Invariant: i >= 0 AND p * n^i == n^k */
p *= n;
--i;

}
/* p = n^k */
return p;

}

CP1–18 – slide 3 – 1st November 2010



Example: n = 3, k = 4. The answer should be 34 = 81.
The computation progesses as follows. Initially, i = k and p = 1. Note
that p × ni is invariant!

i p p × ni

Initial 4 1 1 × 34 = 81

Iteration 1 3 3 3 × 33 = 81

Iteration 2 2 9 9 × 32 = 81

Iteration 3 1 27 27 × 31 = 81

Iteration 4 0 81 81 × 30 = 81

CP1–18 – slide 4 – 1st November 2010



Searching an array

typedef enum {FALSE, TRUE} Bool_t;

Bool_t LinearSearch(int n, int a[], int sKey)
/* Returns TRUE iff (if and only if) sKey is contained
* in the array, i.e., there exists an index i with 0 <= i < n
* such that a[i] == sKey.
*/
{

int i;
for (i = 0; i < n; ++i) {

if (a[i] == sKey) return TRUE;
}
return FALSE;

}

variant:
I Could use return type int with #DEFINE for TRUE, FALSE (see

BinarySearch)

CP1–18 – slide 5 – 1st November 2010



Binary search

Sometimes we quickly want to find an entry in an array.
It helps if the array is sorted.
How do you search for a name in a telephone book?

CP1–18 – slide 6 – 1st November 2010



Binary search

int BinarySearch(int n, int a[], int sKey)
/* Assumes the elements of the array a are in ascending order.
* Returns TRUE iff sKey is contained in the array, i.e.,
* there exists an index i with 0 <= i < n and a[i] == sKey.
*/
{
int i, j, m;

i = 0;
j = n - 1;
/* Precondition: a[0] <= a[1] <= ... <= a[n-1] */

CP1–18 – slide 7 – 1st November 2010



while (i < j) {
/* Invariant: i <= j AND
* if sKey is in a[0:n-1] then sKey is in a[i:j] */
m = (i + j)/2;
if (sKey <= a[m])
j = m;

else
i = m + 1;

}
/* EITHER a[i] == sKey OR sKey is not in a[0:n-1] */
return a[i] == sKey;

}

I Note how we return true/false . . .

CP1–18 – slide 8 – 1st November 2010



Running time

The (worst-case) running time of a function (or algorithm) is defined to be
the maximum number of steps that might be performed by the program
as a function of the input size.

I For functions which take an array (of some basic type) as the input,
the length of the array (n in lots of our examples) is usually taken to
represent size.

I The running time of Linear Search is Θ(n) (ie, around c · n for some
constant c), and the running time of Binary search is Θ(lg(n))
(proportional to lg(n)).

I This size is conceptual and not what gets measured by the sizeof
command in C (sizeof applied to an array is not length)

CP1–18 – slide 9 – 1st November 2010



Measuring running time on a machine

#include <time.h>
Bool_t flag = FALSE;
int a[880000];
double start, stop, t;
...
start = clock();
flag = LinearSearch(a, 880000, -5);
stop = clock();
t = (stop-start)/CLOCKS_PER_SEC;
printf("Time spent by Linear Search was %lf seconds.\n", t);
...

Machines getting faster . . . on DICE, this method measures both
linsearch (and binsearch) at 0.000000 secs on arrays up to length
400000!

CP1–18 – slide 10 – 1st November 2010



Sorting

Given an array of integers (or any comparable type), re-arrange the array
so that the items appear in increasing order.

CP1–18 – slide 11 – 1st November 2010



Bubble sort

“Proto loop”

for (i = n - 1; i >= 1; --i) {
/* Rearrange the contents of array elements a[0], ..., a[i],
* so that the largest value appears in element a[i].
*/

}

“Method”:

I Find the largest item, and move it to the end;

I repeat for 2nd largest item, and so on . . .

CP1–18 – slide 12 – 1st November 2010



Bubble sort (cont’d)

The task of rearranging the contents of array elements a[0], a[1],. . . , a[i ]
so that the largest value appears in element a[i ], may be handled by the
following simple loop:

for (j = 0; j < i; ++j) {
if (a[j] > a[j+1]) swap(&a[j], &a[j+1]);

}

(The largest value supposedly “bubbles” up the array into its appropriate
position.)

CP1–18 – slide 13 – 1st November 2010



Bubble sort code

/* Sorts a[0], a[1], ..., a[n-1] into ascending order. */
void BubbleSort(int a[], int n)
{

int i, j;
for (i = n - 1; i >= 1; --i) {

/* Invariant: The values in locations to the right of a[i]
* are in their correct resting places: that is, they are
* the n - i - 1 largest elements, and they are correctly
* ordered among themselves.
*/

for (j = 0; j < i; ++j) {
if (a[j] > a[j+1]) swap(&a[j], &a[j+1]);

}
}

}

The function used above is the following function from lecture 11.
void swap(int *a, int *b)

CP1–18 – slide 14 – 1st November 2010



Running time of Bubble Sort

The (worst case) running time of Bubble Sort is proportional to n2. why?

There are better sorting algorithms . . . for example MergeSort or HeapSort
run in time proportional to n lg(n).

(lg(n) denotes “log to the base-2”)

CP1–18 – slide 15 – 1st November 2010



A more dramatic example

Sometimes the gap between a good and bad algorithm can be dramatic.
Consider the problem of testing whether an n-bit number is prime.

I The obvious brute force method requires 2n/2 integer divisions
I why?
I This is completely infeasible if n = 200 (say).

I On the other hand, a (non-obvious) algorithm for primality testing
which take time polynomial in n was discovered in 2002
(Agrawal-Kayal-Saxena)

(Needed for RSA public-key cryptosystem.)

CP1–18 – slide 16 – 1st November 2010


