
Computer Programming: Skills & Concepts (CP1)
Simple character-by-character I/O

21th October, 2010

CP1-14 – slide 1 – 21th October, 2010



Characters

The various symbols (’A’, ’a’, ’0’, ’;’, ’@’, etc) that you might find on
the keyboard, together with control characters such as ’\n’ (newline),
all have integer codes (ASCII). These integers are rather small, so can
be wasteful (but sometimes necessary) to use a variable of type int to
represent them.

The type char is like a small integer type, just big enough (a byte) to
hold the usual character set.

I Advantage of char over int: saves space.

I Disadvantage of char over int: cannot be used in certain situations
(as we’ll see).

Oddly enough, ’a’, ’b’, ’c’, etc., denote integer constants and not
characters.

CP1-14 – slide 2 – 21th October, 2010



Bytes and char

A byte is a binary number of length 8 (8 ‘bits’).

I 2 options for each bit ⇒ a byte can take on 28 = 256 possible
values (0 up to 255).

I This is enough to cover the English alphabet + other relevant
symbols...

CP1-14 – slide 3 – 21th October, 2010



Some char values

’a’ 97 ’b’ 98 ’z’ 112

’A’ 65 ’B’ 66 ’Z’ 90

’0’ 48 ’1’ 49 ’9’ 57

’&’ 38 ’*’ 42 ’\n’ 10

’ ’ 32 ’\a’ 7 ’\r’ 13

’ ’ is the space character.
’\r’ is the carriage return character.
’\a’ is a special character that rings a bell!

CP1-14 – slide 4 – 21th October, 2010



I/O with characters

I getchar(): returns the next character from the input stream
(could be characters typed at a keyboard, or read from a file). If the
end of the stream has been reached (user types CTRL/D or the end
of the file is reached) the special value EOF is returned.

I putchar(c): writes the character c to the output stream (could be
the screen, or another file).

We can make this available by adding #include <stdio.h> to the top
of our program.

CP1-14 – slide 5 – 21th October, 2010



Library functions

In addition, #include <ctype.h> gives us various functions on charac-
ters:

I isalpha(c): is c alphabetic?

I isupper(c): is c upper case?

I isdigit(c): is c a digit (0 to 9)?

I toupper(c): if c is a lower case letter, return the corresponding
upper case letter; otherwise return c.

. . . and several others: see Kelley and Pohl A.2.

CP1-14 – slide 6 – 21th October, 2010



Printing Roman numerals

void PrintNum(int n) {
while (n > 0) {
if (n >= 100) {
n = n - 100; putchar(’C’);

} else if (n >= 90) {
n = n + 10; putchar(’X’);

} else if (n >= 50) {
n = n - 50; putchar(’L’);

} else if (n >= 40) {
n = n + 10; putchar(’X’);

} else if (n >= 10) {
n = n - 10; putchar(’X’);

CP1-14 – slide 7 – 21th October, 2010



} else if (n >= 9) {
n = n + 1; putchar(’I’);

} else if (n >= 5) {
n = n - 5; putchar(’V’);

} else if (n >= 4) {
n = n + 1; putchar(’I’);

} else {
n = n - 1; putchar(’I’);

}
}

}

CP1-14 – slide 8 – 21th October, 2010



Printing decimal numbers

void PrintDecimal(int n) {

int m = 100000;

while (m > 0) {
putchar(n/m + ’0’);
n = n%m;
m = m/10;

}
}

Not elegant. How to do better?

CP1-14 – slide 9 – 21th October, 2010



Idiom for single character I/O

We can do a surprising amount by filling in the following template:

#include <stdio.h>
#include <stdlib.h>

int c;

while ((c = getchar()) != EOF) {
/* Code for processing the character c. */

}

The while-loop condition is a bit tricky: it reads a character from the
input, assigns it to c and tests whether the character is EOF (i.e., whether
we have reached the end of the input)!

CP1-14 – slide 10 – 21th October, 2010



Continuing the Roman theme: Caesar cypher

#define offset 13

int c, ord; /* Why is c declared as int and not char? */

while ((c = getchar()) != EOF) {
c = toupper(c);
if (isupper(c)) {
ord = c - ’A’; /* Integer in range [0,25] */
ord = (ord + offset) % 26; /* permute by offset */
c = ord + ’A’; /* back to char */

}
putchar(c);

}

CP1-14 – slide 11 – 21th October, 2010



Example: Letter frequencies

int c, i, count[26];

for (i = 0; i <= 25; ++i) count[i] = 0;
while ((c = getchar()) != EOF) {
c = toupper(c);
if (isupper(c)) {
i = c - ’A’; /* Integer in [0,25] */
++count[i];

}
}
for (i = 0; i <= 25; ++i)
printf("%c: %d\n", i + ’A’, count[i]);

CP1-14 – slide 12 – 21th October, 2010



Idiom for line-oriented I/O

We can do a surprising amount by filling in the following template:

#include <stdio.h>
#include <stdlib.h>

int c;

while ((c = getchar()) != EOF) {
if (c == ’\n’) {
/* Code for processing the line just read. */

} else {
/* Code for processing the character c. */

}
}

CP1-14 – slide 13 – 21th October, 2010



Example: recording line lengths

int c, charCount = 0, lineCount = 0;

while ((c = getchar()) != EOF) {
if (c == ’\n’) {
++lineCount;
printf(" [Line %d has %d characters]\n",

lineCount, charCount);
charCount = 0;

} else {
++charCount;
putchar(c);

}
}

CP1-14 – slide 14 – 21th October, 2010



Input and output redirection

Suppose we have compiled a program, similar to the ones considered
earlier, and placed the resulting object code in the file prog (maybe done
by creating a Makefile and using make; or alternatively just by copying
a.out into prog).

By default, input is from the keyboard, and output is to the screen. So

I Typing ./prog in the shell window runs prog, with input being
taken from the keyboard, and output being written to the shell
window.

However, by extending the command, we may redirect input from the
keyboard to a nominated input file, and redirect the output from the
screen to a nominated output file.

CP1-14 – slide 15 – 21th October, 2010



I ./prog < data takes input from the file data, but continues to
send output to the shell window.

I ./prog > results takes input from the keyboard, but sends
output to the file results.

I ./prog < data > results takes input from the file data, and
sends output to the file results.

Reading material :)

Kelley and Pohl, subsections 3.2, 3.2 and 3.9

CP1-14 – slide 16 – 21th October, 2010


