
Computer Programming: Skills & Concepts (CP1)
Structured data: arrays

19th October, 2010

CP1-13 – slide 1 – 19th October, 2010

Motivation for arrays

In our program on “coin changing” we introduced individual integer
variables to keep track of the number of coins of each denomination:

int n1, n2, n3, n4, n5, n6, n7, n8;

When it came to updating these variables we had to resort to a lengthy
conditional statement, with a separate case for each of the seven variables.
There ought to be a better way!

CP1-13 – slide 2 – 19th October, 2010

Declaration of arrays

The declaration

#define SIZE 8
int a[SIZE];

introduces an array, called a, with 8 elements (or components) of type
integer.

a a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

0 1 2 3 4 5 6 7

(subscript or index)

CP1-13 – slide 3 – 19th October, 2010

Notes

I The first element of the array has index 0, and the final element has
index SIZE - 1.

I We refer to the entire array as a.

I All the elements of the array have type int. We refer to these
individual elements as a[0], a[1], and so on up to a[SIZE - 1].

I Array indices are expressions of type int

CP1-13 – slide 4 – 19th October, 2010

Where the power lies

Since an array index is a integer expression, and not a constant, its value
isn’t determined until the program is run. The precise array element
referred to by a[i] depends on the current value of i
Example:

for (i = 0; i < SIZE; ++i) a[i] = 0;

Effect: Initialise all elements of the array a to zero.
C.f.

a[0] = 0;
a[1] = 0;
...
a[SIZE - 1] = 0;

CP1-13 – slide 5 – 19th October, 2010

Letter frequencies with arrays

int c, i, count[26]; /* Allocate one counter per letter */

for (i = 0; i <= 25; ++i) count[i] = 0;
while ((c = getchar()) != EOF) {

c = toupper(c);
if (isupper(c)) {

i = c - ’A’; /* Integer in [0,25] */
++count[i]; /* Increment counter for letter just read */

}
}
for (i = 0; i <= 25; ++i)

printf("%c: %d\n", i + ’A’, count[i]); /* Print frequencies */

CP1-13 – slide 6 – 19th October, 2010

Finding the commonest letter

int maxCount, /* Maximum count seen so far */
maxIndex; /* Location where we observed that maximum */

maxCount = count[0]; /* Letter A is deemed the winner, */
maxIndex = 0; /* at the outset. */
for (i = 1; i <= 25; ++i) {

if (count[i] > maxCount) { /* Bigger than seen so far? */
maxCount = count[i];
maxIndex = i;

}
}
printf("The commonest letter is \"%c\" with %d occurrences.",

’A’ + maxIndex, maxCount);

CP1-13 – slide 7 – 19th October, 2010

Arrays of any type

We haven’t discussed typedef or struct formally yet . . . though we have
seen, in Practical 1, their use to define a type for representing points in
the plane.
An array of points could be used to represent a polygon with up to MAX
vertices.

typedef struct {
int x, y;

} point_t;

point_t vertex[MAX];

Question: How do we deal with a polygon with fewer than MAX vertices?

CP1-13 – slide 8 – 19th October, 2010

Polygon as an array of vertices

(1,0)

(0,1)

(2,2)
(0,2)

(4,1)

(3,0)

........0 2 2 2 4 1 3 0

vertex[0] vertex[1] vertex[2] vertex[3]

CP1-13 – slide 9 – 19th October, 2010

Arrays as parameters

int Max(int a[], int n) {
/* n is the number of elements in array a. Max returns
* the maximum element of a. NB: We lose the size of
* the array when we pass it as a parameter */

int i, maxSoFar;
maxSoFar = a[0];
for (i = 1; i < n; ++i)

if (a[i] > maxSoFar) maxSoFar = a[i];
return maxSoFar;

}

printf("The commonest letter occurred %d times.", Max(count, 26));

CP1-13 – slide 10 – 19th October, 2010

Arrays are “pointers”

void Rotate(int a[], int n) {
/* Aim: rotate the elements of a cyclically one position. */

int i;
int temp; /* Temporary storage location (like in swap). */

temp = a[n - 1];
for (i = n - 1; i > 0; --i) a[i] = a[i - 1];
a[0] = temp;

}

Rotate(count, 26);

Question: Is count cyclically rotated or unchanged?

CP1-13 – slide 11 – 19th October, 2010

Arrays are “pointers”

The answer is that it is rotated.
The reason? Roughly it is because an array in C is a pointer (to its first
element).

I The actual parameter count is a pointer to an integer.

I The formal parameter a[] is a synonym for *a.

+ve: Means we don’t need to use & and * to get the effect of
“call-by-reference” with array parameters. (remember swap from
lecture 9).

-ve: We always have to incorporate an extra parameter (eg, n in Rotate)
to allow the length of the array to be passed into the function.

CP1-13 – slide 12 – 19th October, 2010

Arrays of arrays

Array elements can themselves be arrays. So, for example, a matrix with
N rows and M columns could be defined as:

float matrix[N][M];

We’d then expect to be able to write a function that multiplies a vector x
by a matrix a with header

void LinTransform(float a[][],
float x[],
float y[],
int n, int m);

However C does not allow this - declaration for a must instead be of the
form a[][10] or a[][8] or similar.
To understand why, check out Kelley & Pohl [KP, §6.12].

CP1-13 – slide 13 – 19th October, 2010

Coin Changing with arrays

Use an array to store the counts n1, ..., n8 in a common format.

I Don’t need global variables any more

CP1-13 – slide 14 – 19th October, 2010

Reading Material

Most of Chapter 6, Kelley and Pohl.

I Specifically, 6.1, 6.4, 6.6, 6.12

I Some other sections of chapter 6 discuss pointers, and also the
relationship between pointers and arrays.

CP1-13 – slide 15 – 19th October, 2010

